
INDEX 87

command property 60

top-level-shell 59

colormap windows property 59

hints property 59, 60

icon name property 60

trace-action action 31

transient-shell 58

translate-event function 40

U

UIMS 3

presentation component 4

undefevent macro 41

unde�ne-resources macro 69

unread-character function 79

update-state function 10, 12, 33, 50

user interface

lexical component 4, 24

semantic component 19, 24

syntactic component 19, 24

user interface management system 3

using-gcontext macro 65

V

variables

contact 20, 21, 30

database 11, 68, 69, 73

default-display 26, 27

default-host 26, 27

default-multipress-delay-limit 43

default-multipress-verify-p 43

trace-output 30, 31

viewable 12

visible 12

W

window 4, 6

window manager 3, 14, 15, 27, 53, 55, 56, 61

window system 3

with-event macro 29

with-input-editing macro 78

with-wm-properties macro 61

wm-message structure 61

wm-protocols method 58, 61

wm-shell 56

wm delete window message 61

wm save yourself message 62

wm take focus message 62

X

X Window System 2

events 27

graphics context 65

host 26

server 9, 10, 25, 27, 42

X-Toolkit 5

XLIB package 5

86 INDEX

next-sibling function 63

O

open-contact-display function 25, 51, 70, 81

override-shell 56

changing state 56

owner 53

P

packages

CLUE 5

XLIB 5

peek-character function 79

perform-callback action 30

pop-up 53

preferred-size method 16, 48

previous-sibling function 63

process-all-events function 33

process-next-event function 10, 13, 29, 33

property

client machine 60

colormap windows 59

command 60

for interclient communication 53, 56, 60, 61

hints 58, 59, 60

icon name 60

name 58

normal hints 58

protocols 58

R

read-character function 79

realize method 10, 17

realized 10, 12

realized-p method 10, 18

representation type 71

standard conversions 71

resize method 17

resource 10, 22, 68

accessing 71

binding 68

class 23

complete class 18, 70

complete name 18, 70

constraint 11, 73

database 5, 9, 11, 25, 39, 68

initialization 11, 17

matching 72

name 9, 23

non-slot 11, 17

representation type 23, 71

speci�cation 11, 19, 22, 70, 73

type conversion 71

resource function 19, 72

root 4, 27, 51

default 11, 26, 51, 52

special features 53

use by an application 52

root shell 54

S

sensitive-p function 19

sensitivity 43

session manager 53, 60, 61

shell 4, 14, 15, 53

:map callback 55

:unmap callback 55

content 55, 63

default state 54

geometry management 55

hints property 58

name property 58

normal hints property 58

owner 53

popping down 55

popping up 55

protocols property 58

root 54, 59

state 55

transients 58

stream I/O model 24, 80

stream-clear-input method 77

stream-clear-output method 79

stream-fresh-line method 78

stream-listen method 77

stream-peek-char method 77

stream-read-char method 76

stream-read-line method 76

stream-rubout-handler method 77

stream-unread-char method 77

stream-write-char method 78

stream-write-string method 78

synchronization 33

T

throw-action action 30

timer 34

top-level-p function 63

top-level-session 60

client machine property 60

INDEX 85

destroyed-p function 18

display 4, 25

display method 15, 44

display-class macro 70

display-multipress-delay-limit macro 42

display-multipress-verify-p macro 42

display-name macro 70

display-root function 52

display-root-list function 52

double-click event 36, 41

drawable 6, 66

E

eval-action action 30

event 27, 28

:timer 34

compression 16, 44

dispatching 24

double-click 36, 41

synchronizing 33

translation 24, 33, 38

event loop 24, 32

example 32

terminating 33

event loop model 4, 24, 81

event mask 39

event speci�cation 35

check function 38

extended syntax 37

interclient messages 61

match function 38, 39

event translation 9, 39

class event translation 38, 41

event-actions function 40

G

gcontext 65

geometry management 12, 47

geometry manager 47

graphics context 65

hierarchical inheritance 66

sharing 66

H

handle-event method 38, 39

I

ignore-action action 31

INCOMPLETE! 32

initialize-geometry method 50

initialize-instance method 17

input 24

compression 9, 16, 44

focus 16, 46, 50, 51, 62

global 31

models 24, 80

sensitivity 19, 43

inside-contact-p method 18

interactive-stream 4, 24, 76, 80

input from 76, 79

make-interactive-stream function 81

stream-clear-input method 77

stream-clear-output method 79

stream-fresh-line method 78

stream-listen method 77

stream-peek-char method 77

stream-read-char method 76

stream-read-line method 76

stream-rubout-handler method 77

stream-unread-char method 77

stream-write-char method 78

stream-write-string method 78

with-input-editing macro 78

interclient communication 4, 53, 55, 56, 60, 61

K

key-press events 37

key-release events 37

L

listen-character function 80

M

make-contact function 9, 10, 11, 71, 73, 81

make-contact functions 54

make-interactive-stream function 81

manage-geometry method 48

manage-priority method 49

managed 12, 48

mapped 12

match function 38

match-p function 72, 75

motion-notify events 35

move method 17

move-focus method 50, 63

N

84 INDEX

apply-callback macro 20

callback-p function 20

change-geometry function 14

change-priority function 14

characteristic functions 15

contact programmer interface 15

contact-complete-class function 18

contact-complete-name function 18

contact-parent method 47

contact-root function 52

contact-screen function 52

contact-state method 13

convert method 71

de�ning a class 21

delete-callback function 21

delete-event function 40

delete-timer function 35

describe-action action 30

destroy method 15, 21

destroyed-p function 18

display method 15

eval-action action 30

event mask 39

event-actions function 40

handle-event method 39

ignore-action action 31

initialize-instance method 17

initializing 10

inquiry functions 18

inside-contact-p method 18

make-contact function 11

managed 12, 48

management functions 17

mapped 12

move method 17

next-sibling function 63

perform-callback action 30

preferred-size method 16

presented 13

previous-sibling function 63

realize method 17

realized-p method 18

realizing 10, 12, 17, 19

reparenting 47

resize method 17

resource function 19, 72

resource initialization 11

sensitive-p function 19

sensitivity 43

state 12, 13

throw-action action 30

top-level 14, 15, 52, 53

top-level-p function 63

trace-action action 31

translate-event function 40

viewable 12

visible 12

withdrawn 13

contact programmer 3

contact-complete-class function 18

contact-complete-name function 18

contact-constraint macro 74

contact-display 4, 8, 12, 24

add-before-action function 32

append-characters function 80

before-actions function 32

clear-characters function 80

default root 11, 26, 51, 52

default screen 26

delete-before-action function 32

display-class macro 70

display-multipress-delay-limit macro 42

display-multipress-verify-p macro 42

display-name macro 70

display-root function 52

display-root-list function 52

input from interactive streams 79

listen-character function 80

peek-character function 79

process-all-events function 33

process-next-event function 33

read-character function 79

unread-character function 79

update-state function 12

contact-parent method 47

contact-root function 52

contact-screen function 52

contact-state method 13

convert method 12, 71

D

default-resources function 73

defcontact 21

defcontact macro 10, 11, 22, 73

defevent macro 39, 41

de�ne-resources macro 69

delete-before-action function 32

delete-callback function 21

delete-child method 47

delete-event function 39, 40

delete-timer function 35

descendant 45

describe-action action 30

describe-event-translations function 41

describe-resource function 69

destroy method 15, 21

Index

*

contact 20, 21, 30

database 11, 68, 69, 73

default-display 26, 27

default-host 26, 27

default-multipress-delay-limit 43

default-multipress-verify-p 43

trace-output 30, 31

A

accept-focus-p method 16, 50, 63

actions 9, 24, 29, 31, 38

argument list 29

before 26, 31, 33

prede�ned 29

add-before-action function 32

add-callback function 21

add-child method 46

add-event function 39, 40

add-timer function 34

ancestor 45

ancestor-p function 63

animation 34

append-characters function 80

application programmer 3

apply-action action 30

apply-callback macro 20

B

before action 26, 31, 33

before-actions function 32

button-press events 36

button-release events 36

C

callback 9, 19, 29

aborting 20

callback-p function 20

change-geometry function 14, 17, 48

change-layout method 49

change-priority function 14, 49

check function 38

check-function macro 37

class event translation 38, 39, 41

class-constraints function 74

class-resources function 73

classes

composite 46

contact 6

event 28

interactive-stream 76

override-shell 56

root 51

shell 53

top-level-session 60

top-level-shell 59

transient-shell 58

wm-shell 56

clear-characters function 80

client-message events 37

CLOS 2, 3

CLUE package 5

CLX 1, 3

complete resource class 18, 70

complete resource name 18, 70

composite 4, 45

add-child method 46

change-layout method 49

delete-child method 47

initialize-geometry method 50

manage-geometry method 48

manage-priority method 49

move-focus method 50

contact 2, 4, 6

:destroy callback 15, 21

accept-focus-p method 16

add-callback function 21

add-event function 40

add-timer function 34

ancestor-p function 63

application programmer interface 13, 20

apply-action action 30

83

Bibliography

[1] Bobrow, Daniel G., et al. The Common Lisp Object System Speci�cation (X3J13-88-002). American

National Standards Institute, June, 1988.

[2] Gettys, Jim, et al. Xlib { C Language X Interface, Version 11, Revision 3.

[3] McCormack, Joel, et al. The X-Toolkit Intrinsics, Version 11, Revision 3.

[4] Pfa�, G.E., Ed. User Interface Management Systems. Springer-Verlag, Berlin, 1985.

[5] Rosenthal, David S. H. X11 Inter-Client Communication Conventions Manual, Public Review Draft

(December 8, 1988).

[6] Schei
er, Robert W. The X Window System Protocol, Version 11, Revision 3.

[7] Schei
er, Robert W. and Gettys, Jim. The X Window System. ACM Transactions on Graphics, Vol. 5,

No. 2 (April 1986).

[8] Schei
er, Robert W., et al. CLX Interface Speci�cation, Version 4 (September 1987).

[9] Steele, Guy. Common LISP: The Language. Digital Press, Burlington, MA, 1984.

82

Chapter 8

Acknowledgements

We are indebted to the following individuals, whose careful reading and insightful suggestions have consid-

erably improved the design of CLUE and the clarity of this document.

Jim Dutton Texas Instruments

Tom Ekberg Texas Instruments

Haruyuki Kawabe Nihon Unisys Ltd.

Mark Kirkpatrick Texas Instruments

Suzanne McBride Texas Instruments

Dan Stenger Texas Instruments

By now, the use of CLUE software has grown beyond the scope of our own e�orts and has bene�ted from the

contributions of many other programmers. We would particularly like to thank the following CLUE users

for helping to make the public implementation of CLUE more useful for all of us.

Martin Dragomirecky General Electric CRD

Phil Dyskstra U.S. Army, Ballistics Research Laboratory

Dan Golan Convex Computer Corporation

Patrick Hogan Texas Instruments

Craig Timmerman Texas Instruments

Yvo Van Wezemael German National Research Laboratory for Computer Science

81

80 CHAPTER 7. INTERACTIVE STREAMS

No explicit references to a contact-display object are necessary. The stream I/O model is implemented in

terms of the more basic event loop model, using a contact-display object which is created automatically.

The make-interactive-stream function creates and returns an interactive-stream contact for use by a

stream I/O application.

make-interactive-stream Function

(defun make-interactive-stream

(&rest keywords

&key (type 'interactive-stream)

&allow-other-keys)

(declare (values interactive-stream)))

Creates and returns an interactive-stream contact. The contact-display associated with the

interactive-stream is created automatically. keywords may include any appropriate keyword un-

derstood by open-contact-display and by make-contact for the interactive-stream.

type

If given, type must be a subclass of interactive-stream which speci�es the type of

interactive-stream to return.

7.4. STREAM I/O MODEL 79

Returns the character object which would be returned by read-character but does not remove it

from the keyboard bu�er of the contact-display.

listen-character Function, contact-display

(defun listen-character

(contact-display)

(declare (values boolean)))

Returns nil if and only if the keyboard bu�er of the contact-display is empty. Otherwise, the next

character in the keyboard bu�er is returned (but not removed).

clear-characters Function, contact-display

(defun clear-characters

(contact-display))

Removes any bu�ered characters from the keyboard bu�er of the contact-display. Returns nil.

append-characters Function, contact-display

(defun append-characters

(contact-display

chars))

chars may be either a character or a string. Appends the characters to the keyboard bu�er of the

contact-display.

7.4 Stream I/O Model

In the stream I/O model, an interactive application exchanges character data with an interactive-stream

contact. The stream I/O model represents applications which use a simple character-based style of user

interaction and do not rely upon additional input from pointer devices. Such applications have the following

generic structure.

� Create and open a stream.

� Perform application initialization.

� Read a command from the stream and execute it.

� Repeat the previous step until the application terminates.

78 CHAPTER 7. INTERACTIVE STREAMS

Outputs a #nnewline to the interactive-stream if and only if the interactive-stream is not

already at the beginning of a new line. Returns non-nil if a #nnewline was output and nil otherwise.

stream-clear-output Method, interactive-stream

(defmethod stream-clear-output

((interactive-stream interactive-stream))

(declare (values nil)))

Aborts any outstanding output operation on the interactive-stream and returns nil.

7.3 Input From Multiple Streams

Multiple interactive-stream contacts can be created for the same contact-display. In this case,

character input from the user to all such interactive-stream contacts is collected in a single keyboard

bu�er owned by the contact-display. When a Common Lisp stream input function operates on an

interactive-stream, characters are returned from the contact-display's keyboard bu�er. Thus, stream

input from an interactive-stream is implemented by operations on the contact-display object (see

Section 7.1).

read-character Function, contact-display

(defun read-character

(contact-display)

(declare (values character)))

Reads the next character object from the keyboard bu�er of the contact-display. If the keyboard

bu�er is empty, then this function waits until the next character for the keyboard bu�er arrives.

unread-character Function, contact-display

(defun unread-character

(contact-display

char))

Unreads the character object and returns it to the keyboard bu�er of the contact-display. char

will be the next character read by read-character.

peek-character Function, contact-display

(defun peek-character

(contact-display)

(declare (values character)))

7.2. INTERACTIVE STREAM OUTPUT 77

Applies the input function to the arguments inside an environment in which the input bu�er may

be edited by user commands. options is a list of rubout handler options. The value of function is

returned.

with-input-editing Macro, interactive-stream

(defmacro with-input-editing

(stream

&rest options)

&body body)

Executes the body inside an environment which allows user editing of input from stream. If stream

is an interactive-stream, then the stream-rubout-handler method is used for input operations.

The options arguments are rubout handler options.

7.2 Interactive Stream Output

Character output to an interactive-stream is implemented by the following methods.

stream-write-char Method, interactive-stream

(defmethod stream-write-char

((interactive-stream interactive-stream)

character)

(declare (values character)))

Outputs the character to the interactive-stream and returns the character.

stream-write-string Method, interactive-stream

(defmethod stream-write-string

((interactive-stream interactive-stream)

string

&optional start

end)

(declare (values string)))

Outputs characters in the string to the interactive-stream and returns the string. The start

and end arguments, if given, indicate a substring that is to be output.

stream-fresh-line Method, interactive-stream

(defmethod stream-fresh-line

((interactive-stream interactive-stream))

(declare (values boolean)))

76 CHAPTER 7. INTERACTIVE STREAMS

Reads character objects from the interactive-stream, up to and including the next #nnewline

character, and returns them as a string (without the #nnewline). If given, the make-array-options

arguments are passed to make-array when the returned string is created.

stream-unread-char Method, interactive-stream

(defmethod stream-unread-char

((interactive-stream interactive-stream)

character))

Unreads the character object. char will be the next character read by stream-read-char.

stream-peek-char Method, interactive-stream

(defmethod stream-peek-char

((interactive-stream interactive-stream)

peek-type)

(declare (values character)))

Returns the character object which would be returned by stream-read-char but does not remove it

from the input bu�er. If peek-type is t, stream-peek-char skips over any whitespace characters,

removing them from the input bu�er, and returns the next character.

stream-listen Method, interactive-stream

(defmethod stream-listen

((interactive-stream interactive-stream))

(declare (values boolean)))

Returns nil if no character is immediately available from the interactive-stream. Otherwise, the

next character is returned, as if stream-peek-char had been called.

stream-clear-input Method, interactive-stream

(defmethod stream-clear-input

((interactive-stream interactive-stream)))

Clears any bu�ered characters received the interactive-stream. Returns nil.

stream-rubout-handler Method, interactive-stream

(defmethod stream-rubout-handler

((interactive-stream interactive-stream)

options

function

&rest arguments))

Chapter 7

Interactive Streams

CLUE de�nes a interactive stream contact, an object which behaves like a Common Lisp input/output

character stream. An interactive stream contact is an instance of the contact class interactive-stream

and may be given by the application programmer as a stream argument to Common Lisp I/O functions

such as read, listen, prin1, etc. The fundamental interface to interactive-stream objects consists of

methods which implement the basic Common Lisp character stream operations (see [9], Chapter 22) but

whose details are implementation-dependent.

7.1 Interactive Stream Input

Character input from an interactive-stream is implemented by the following methods. In turn, these

methods are implemented using operations on the associated contact-display object. See Section 7.3.

stream-read-char Method, interactive-stream

(defmethod stream-read-char

((interactive-stream interactive-stream))

(declare (values character)))

Reads the next character object from the interactive-stream.

stream-read-line Method, interactive-stream

(defmethod stream-read-line

((interactive-stream interactive-stream)

&rest make-array-options)

(declare (values string)))

75

74 CHAPTER 6. RESOURCE MANAGEMENT

Figure 6.1: Standard Type Conversions

Value Type Result Type

xlib:card8 xlib:cursor

xlib:image xlib:pixmap

xlib:stringable keyword

xlib:stringable t

xlib:stringable xlib:boolean

xlib:stringable xlib:color

xlib:stringable xlib:cursor

xlib:stringable xlib:font

xlib:stringable xlib:image

xlib:stringable xlib:pixel

xlib:stringable xlib:pixmap

t string

(float 0 1) xlib:pixmap

(rational 0 1) xlib:pixmap

Figure 6.2: Matching Resource Names

(defun match-p (partial-name complete-name complete-class)

(declare (type list complete-name complete-class partial-name)

(values (OR null (integer 0))))

(do ((names complete-name (cdr names)) ;Loop through names...

(classes complete-class (cdr classes)) ; and classes...

(score 0 (ash score 2)) ; adding up the score.

(exact-matching-p t) ;Start looking for exact match.

no-exact-match)

((or (null partial-name) ;Partial name is fully-matched.

(> (length partial-name) (length names)) ;A match is no longer possible.

no-exact-match) ;...and can't match wildcard.

(when (null partial-name) score)) ;Return score, if match.

(let ((name (car names))

(class (car classes))

(partial (car partial-name)))

(when (same-name-p partial '*)

(setq exact-matching-p nil) ;Now look for wildcard match.

(pop partial-name)

(setq partial (car partial-name)))

(when

(cond

((same-name-p name partial) (incf score 2)) ;Name match worth 2 points.

((same-name-p class partial) (incf score 1)) ;Class match worth 1 points .

((setq no-exact-match exact-matching-p) nil)) ;No match unless wildcarding.

; Otherwise, matching fails but we're wildcarding: just try next name/class.

(pop partial-name)

(setq exact-matching-p t))))) ;Resume looking for exact match.

6.5. CONTACT RESOURCES 73

Constraint resources allow a parent composite to \attach" resources to its children without the knowledge

of the children themselves. More precisely, the set of constraint resources belonging to a contact is de�ned

by the programmer of the parent class, not the programmer of the contact's class. Constraint resources are

typically used to control the parent's geometry management policy. The contact-constraint macro may

be used to return or change the value of a contact constraint resource.

class-constraints Function

(defun class-constraints

(class

&optional full-p)

(declare (values resources)))

Returns the constraint resource speci�cation list for the given contact class. If full-p is non-nil,

then the full resource speci�cation list is returned; otherwise, a list of resource names is returned.

contact-constraint Macro

(defmacro contact-constraint

(contact

resource-name)

(declare (type contact contact)

(type symbol resource-name))

(declare (values constraint-value)))

Returns or (with setf) changes the value of the given constraint resource of the contact.

72 CHAPTER 6. RESOURCE MANAGEMENT

Returns the value found for a contact resource when the contact was initialized. resource-name is

the name of a resource de�ned in the resource speci�cation list for the contact's class or one of its

superclasses.

default-resources Function

(defun default-resources

(contact

class

&optional resource-name)

(declare (values resource-plist)))

Returns the default values for contact resources of the given class (and, optionally, with the given

resource-name). The return value is a property list of the form (fresource-name valueg*). Each

value is determined by the contents of the resource database (given by the value of the special

variable *database*) and by the resource speci�cation list of the contact's class , using the same

algorithm employed by the make-contact function (see Section 2.1.1).

If contact is a string, then it is assumed to be a host name. In this case, resources are returned for

the default root of a contact-display connected to this host.

6.5 Contact Resources

Every contact has a set of resources which are initialized automatically when the contact is created by the

make-contact function (see Section 2.1.1). If initial values for contact resources are not given as arguments

to make-contact, then initial values are looked up in the resource database given by the value of the special

variable *database*.

Two types of resources may be associated with a contact. Class resources are determined by the contact

class. Class resources are de�ned by a :resources option in the defcontact form de�ning the contact class.

The class-resources function may be used to return a list of contact class resources.

class-resources Function

(defun class-resources

(class

&optional full-p)

(declare (values resources)))

Returns the resource speci�cation list for the given contact class. If full-p is non-nil, then the full

resource speci�cation list is returned; otherwise, a list of resource names is returned.

A contact may also have constraint resources which are determined by the class of the contact's parent.

Constraint resources are de�ned by a :constraints option in the defcontact form de�ning the parent

class. The class-constraints function may be used to return the list of constraint resources de�ned by a

contact class.

6.4. ACCESSING RESOURCE VALUES 71

The intent of the lookup algorithm is to formalize an intuitive notion of \the closest match".

� Precedence is given to a match which begins \higher" in the parent-child contact hierarchy. This allows

a resource binding with a partial name to de�ne a resource value shared by all members of a contact

subtree.

� Precedence is given to the more speci�c match. A name match is more speci�c than a class match.

� The more name/class components matched, the closer the match.

The matching of resource names may be precisely de�ned by the match-p function shown in Figure 6.2.

match-p tests if a partial name matches a complete name/class. If it does, then the value returned is

a numerical score representing the closeness of the match (the greater the score, the closer the match).

Comparison of names uses a function called same-name-p, which uses case-insensitive comparison if either

name is a symbol, but uses case-sensitive comparison if both names are strings.

For example, assume that a resource database contains the resource bindings shown in the previous example.

Resource Name Resource Value

(mail screen-1 reply background) 'green

(mail * background) 'red

(* button background) 'blue

If the mail application's reply button contact requests the value for its background resource, using the com-

plete resource name (mail screen-1 reply background) and the complete resource class (contact-display

root button fill), then each of the partial names in the database \matches."

(match-p '(mail screen-1 reply background) . . .) = 680

(match-p '(mail * background) . . .) = 520

(match-p '(* button background) . . .) = 24

However, (mail screen-1 reply background) is clearly the closest match and has the highest \score."

The xlib:get-resource function uses the above algorithm to look up the resource value in a resource

database which is the closest match to a given complete resource name and class. The most common access

to resources occurs during contact initialization, using the complete resource name and class of the contact.

The resource function may be used to return the value of a contact resource found at initialization. The

resource function also returns a resource value of the correct representation type. The default-resources

function may be used to return the default values for contact resources.

resource Function, contact

(defun resource

(contact

resource-name)

(declare (values resource-value)))

70 CHAPTER 6. RESOURCE MANAGEMENT

6.3 Representation Types

A representation type allows an application to request di�erent representations of the same resource value.

For example, a color value might be represented either as a name string (\red"), a pixel value, an RGB

triplet, an HSV triplet, etc. Only one representation for the resource value is actually stored in a resource

database. Conversion functions may be invoked to return a representation type di�erent from the one stored.

The representation type used for a contact resource is de�ned by the :type option of its resource speci�cation

in the defcontact. During contact initialization, a contact resource value read from a resource database by

make-contact is automatically converted to its speci�ed representation type.

CLUE performs resource representation type conversion by calling the convert function. CLUE de�nes

methods for the convert function to handle all standard conversions. The standard representation type

conversions provided by CLUE are shown in Figure 6.1.

In order to de�ne a new representation type, the contact programmer must de�ne methods for convert

that handle the new representation type appropriately. Typically, convert methods will specify param-

eter specializers for type (e.g. (eql data-type)) and for value and will be de�ned only for each valid

source/destination type pair.

convert Method

(defmethod convert

(contact

(value t)

(type t))

(declare (values new-value)))

Converts the value into a new value whose data type is type. If the requested conversion cannot be

performed, then nil is returned.

This method implements a type-conversion facility designed speci�cally for contact resources. Re-

source type conversion requires a contact argument because resource representation may depend

upon attributes of a display, a screen, or even the contact itself.

The primary method for convert is capable of converting any read-able string representation of a Com-

mon Lisp data type. When the value type is xlib:stringable, this method uses read-from-string;

if the result satis�es the type, then it is used. The primary convert method also handles type spec-

i�ers of the form (or type*) and (member atom*).

6.4 Accessing Resource Values

The power and
exibility of resource management are the result of the way resource values in a resource

database are accessed. A resource binding stored in the database generally contains only a partial resource

name consisting of a mixture of name and class symbols. To look up a resource value, one starts with a

complete resource name and a complete resource class. The lookup algorithm then returns the value for the

resource binding whose partial name is the closest match to the complete name and class given. The de�nition

of \closest match" takes into account the top-down, parent-child hierarchy of resource names/classes.

6.2. COMPLETE NAMES AND CLASSES 69

6.2 Complete Names and Classes

In order to access a contact resource value in a resource database, an application uses two items as a \key":

a complete resource name, and a complete resource class. A contact's complete resource name

and class are derived from the contact and its (current) ancestors. The complete resource name is a list of

symbols of the form (name

1

. . . name

n�1

name

n

), where name

n

is the name of the contact, name

n�1

is the

name of the contact's parent, etc., and name

1

is the name of the contact-display to which the contact

belongs (see below). Similarly, a contact's complete resource class is a list of type symbols of the form (class

1

. . . class

n�1

class

n

), where class

n

is the class of the contact,

1

class

n�1

is the class of the contact's parent,

etc., and class

1

is the class of the contact-display to which the contact belongs

2

. Complete resource

name and class lists thus have the same length.

The names of the resources used by a contact are de�ned by the contact class and are given by the resource

speci�cation list in a defcontact form (see Section 2.2). Each such contact resource also has a complete

resource name, de�ned to be (append (contact-complete-name contact) (list resource-name)). Simi-

larly, the complete resource class of a contact resource is de�ned to be (append (contact-complete-class

contact) (list resource-class)), where resource-class is given by the :class option of the resource speci�-

cation.

For all contacts that belong to a contact-display, the \top-level" complete resource name component is

a resource name symbol associated with the contact-display. Since an application usually uses a single

contact-display, this name is usually a symbol which identi�es the application itself. This name is given

as the value of the :name keyword argument to the open-contact-display function. In addition, the

display-name and display-class macros may be used to inquire the name and class, respectively, of a

contact-display.

display-name Macro, contact-display

(defmacro display-name

(contact-display)

(declare (values symbol)))

Returns the contact-display resource name symbol.

display-class Macro, contact-display

(defmacro display-class

(contact-display)

(declare (values symbol)))

Returns the contact-display resource class symbol.

1

The class symbol for a contact is the value of (class-name (class-of contact)).

2

The complete resource class should not be confused with the inheritance classes of a contact. The complete resource class

depends on the parent-child structure of the contact hierarchy and can change at run time. The inheritance class of the contact

(its \class precedence list") is �xed at compile time.

68 CHAPTER 6. RESOURCE MANAGEMENT

\wildcarding" for partial paths, and can include both resource names and contact class symbols at any

position.

A user can establish resource bindings in a resource database by using the define-resources macro or

the xlib:add-resource function. The describe-resource function may be used to print the values in a

resource database associated with a given name. It can also be useful to process the set of resource bindings

in a resource database (for example, to save them to a �le). The xlib:map-resource function is designed

for this purpose.

de�ne-resources Macro

(defmacro define-resources

(&rest resource-bindings))

Establishes values for the given resources in a resource database. The resource database used is given

by the value of the special variable *database*. The resource-bindings arguments form a sequence

of name/value pairs. If the resource database already contains a value for a name, then it is replaced

by the new value. Value arguments are evaluated but name arguments are not.

unde�ne-resources Macro

(defmacro undefine-resources

(&rest resource-bindings))

The resource-bindings arguments form a sequence of name/value pairs. Any resource binding for a

given name argument is removed from a resource database. The resource database used is given by the

value of the special variable *database*. The name arguments are not evaluated. Value arguments

are ignored.

describe-resource Function

(defun describe-resource

(name

&optional (database *database*)))

Prints on *standard-output* a description of each value associated with the name in the given

database. Speci�cally, a resource binding in the database is printed if name is the last element

of its resource name.

database Variable

(defvar *database* (make-resource-database :reversep t))

Used as the default resource database by CLUE functions.

Chapter 6

Resource Management

Users need a way to specify preferences for various values of the user interface (e.g. colors, fonts, title

strings, etc.). Applications, too, need a consistent method for determining the default interface values that

are speci�c to them. It also is useful if application interface values can be modi�ed by a user \externally,"

without change to the application program. For example, this capability can make it easy to change the

color scheme of a user interface.

In CLX, such interface values are referred to as resources. CLX de�nes functions for storing and retrieving

interface resources from a resource database. CLUE automatically accesses contact resources during

contact initialization; the resource database used is given by the value of the special variable *database*.

6.1 Resource Databases

This section summarizes the features of an xlib:resource-database. See [2] and [8] for a complete de-

scription of CLX resource management.

Conceptually, a resource database is a set of resource name-value pairs (or resource bindings). Some

examples of resource bindings are shown below. In these examples, we assume that mail is the resource

name of a mail reading application; mail uses a contact of the class button whose name is reply.

Resource Name Resource Value

(mail screen-1 reply background) 'green

(mail * background) 'red

(* button background) 'blue

These resource bindings specify that the background color resource of mail's reply button has the value

green on screen-1, that the background color for the rest of the mail application is always red on all

screens, and that, in general, the background color for all button contacts is blue. Thus, the name in a

resource binding is a list of symbols (or strings) which are hierarchically related in a way that corresponds

to a path down a parent-child tree of contacts. The name can be a partial (or incomplete) path, can use

67

66 CHAPTER 5. GRAPHICS CONTEXTS

(with-slots (parent font) self

(using-gcontext

(gcontext :default (gcontext-from parent)

:font font)

;; Foreground/background are inherited, but

;; font is given by child instance data.

...

))

Changes to values in the inherited default graphics context would then a�ect the appearance of child contacts.

Again, in this example, the programmer is concerned only with specifying the required graphical attributes

and defaults, and not with how the xlib:gcontext is created.

A contact programmer could also choose to associate a graphics context with each instance of his classes

and to perform graphics output with this graphics context directly.

(with-slots (gcontext) self

;; Graphics context cache is not used.

...

)

In this case, xlib:create-gcontext must be called to compute a value for the gcontext slot. Any sharing

of xlib:gcontext objects among contacts must be controlled explicitly by the programmer, and changes to

shared graphics contexts will have side-e�ects.

5.2. POLICIES FOR SHARING GRAPHICS CONTEXTS 65

Executes the body forms in a lexical context in which gcontext is bound to an xlib:gcontext object

containing the speci�ed attributes. gcontext-options is a sequence of keyword-value pairs which can

include any attribute keyword accepted by xlib:create-gcontext.

A :drawable argument must be given. gcontext can be used in graphics operations on any

xlib:drawable with the same root and depth as the given :drawable argument.

The optional :default keyword argument speci�es an existing xlib:gcontext object which furnishes

default attribute values. Attributes in gcontext which are not given by gcontext-options then have

the value contained in default. If :default is omitted, then default values for gcontext are those

de�ned by the X Window System protocol.

The contents of gcontext should not be modi�ed inside the body. This macro replaces the use of the

xlib:create-gcontext and xlib:free-gcontext functions and the xlib:gcontext- accessors.

5.2 Policies for Sharing Graphics Contexts

Di�erent policies may be used for sharing graphics contexts among several contacts, depending upon how

graphics attribute state information is associated with contact instances.

Typically, a contact class may de�ne instance variables which associate some graphics attribute state with

class instances. For example, instances of a contact class for text display might have instance variables which

record their current font, foreground color, and background color. Methods of this class would then generally

perform graphics output in the body of a using-gcontext form, as shown below.

(with-slots (font fg bg) self

(using-gcontext

(gcontext :font font

:foreground fg

:background bg)

...

))

In this case, graphics output would always exhibit the associated attributes and would use constant defaults

for any other graphical attributes. This is an example of a \transparent sharing" policy, since the programmer

is not concerned with which xlib:gcontext objects are used. Only one xlib:gcontext object containing

the required attributes needs to be created, and sharing is accomplished automatically via using-gcontext's

cache.

A \hierarchical inheritance" policy would allow contacts to inherit defaults for graphical attributes from

their ancestors. For example, hierarchical inheritance would allow all children of a given composite to

appear in the same foreground/background colors by default. A hierarchical inheritance policy requires the

contact programmer to de�ne some method of associating a default xlib:gcontext with an ancestor. Then,

methods of children contacts could perform graphics output as shown below. In the following example, a

function called gcontext-from is used to return the inherited graphics context. Here, too, the programmer

is concerned only with specifying the required graphical attributes and defaults, and not with how the

xlib:gcontext is created.

Chapter 5

Graphics Contexts

Clients of the X Window System specify the visual attributes of graphical output primitives by using graph-

ics contexts. A graphics context is a set of graphical attribute values (e.g. foreground color, font, line style,

\raster-op" function, etc.) which is created and maintained by the X server at the request of a client program.

The client program, which may use several di�erent graphics contexts at di�erent times, is responsible for

specifying which graphics context is used with each graphical output request. See [6] for a complete treat-

ment of the use of graphics contexts in the X Window System. CLX[8] represents a graphics context by an

object of type xlib:gcontext and also de�nes a simple caching scheme which expedites the modi�cation

and inquiry of xlib:gcontext attributes. CLUE provides support for more e�cient sharing of graphics

context objects among several components of the user interface. Contact programmers are still free to adopt

various policies for sharing graphics contexts, including hierarchical inheritance or no sharing at all.

5.1 Using the Graphics Context Cache

The CLUE macro using-gcontext allows the programmer transparent access to a cache of previously-

created xlib:gcontext objects. As a consequence of the using-gcontext macro, most CLUE program-

mers will seldom need to explicitly create or free graphics contexts. The caching strategy implemented by

using-gcontext is intended to minimize the number of xlib:gcontext objects created. A programmer

requests a graphics context containing a speci�c set of attribute values. The using-gcontext macro cre-

ates a new xlib:gcontext with these attributes only if such a xlib:gcontext is not already present in

its cache and the cache is not full. If the cache is full, then using-gcontext modi�es a previously-cached

xlib:gcontext and returns it.

using-gcontext Macro

(defmacro using-gcontext

((gcontext

&rest gcontext-options

&key default

&allow-other-keys)

&body body))

64

4.6. HIERARCHY UTILITY FUNCTIONS 63

Returns the next contact in the children list of (contact-parent contact) preceding contact (or

nil, if contact is the �rst element of the list).

top-level-p Function, contact

(defun top-level-p

(contact)

(declare (values boolean)))

Returns non-nil if the parent of contact is a root.

62 CHAPTER 4. CONTACT HIERARCHY

This form of event speci�cation matches a :client-message event when it is a :wm take focus

message from the window manager. If any accessor function/value pairs are given, then the data

slot of the event must match each function/value. That is, (equal (funcall function data)

value) must be true for each accessor-value. During accessor matching, the special variable

event-display is bound to the display slot of the event. The event display may be needed

to convert X resource id numbers in the data into the form used in CLX and CLUE.

This message may be received by a top-level-shell which has selected the :wm take focus

protocol. This message indicates that the user wants to make the top-level-shell (or one of

its descendants) the focus for keyboard input.

CLUE de�nes a default wm-shell class event translation for :wm take focus that automat-

icallly sets the input focus to the contact which is the content of the receiving shell (using

accept-focus-p). If the content is a composite and (not (accept-focus-p content)), then

move-focus is used to set the focus to its composite-focus child.

4.6 Hierarchy Utility Functions

The following functions are useful for manipulating the contact hierarchy.

ancestor-p Function, contact

(defun ancestor-p

(contact

composite)

(declare (values boolean)))

Returns non-nil if composite is an ancestor of contact.

next-sibling Function, contact

(defun next-sibling

(contact)

(declare (values contact)))

Returns the next contact in the children list of (contact-parent contact) following contact (or

nil, if contact is the last element of the list).

previous-sibling Function, contact

(defun previous-sibling

(contact)

(declare (values contact)))

4.5. SHELLS 61

CLUE de�nes the following special event speci�cations in order to simplify processing of :client-message

events sent by the window/session manager to an application shell.

(:wm delete window accessor-value*)

accessor-value ::= function value

This form of event speci�cation matches a :client-message event when it is a

:wm delete window message from the session manager. If any accessor function/value pairs

are given, then the data slot of the event must match each function/value. That is, (equal

(funcall function data) value) must be true for each accessor-value. During accessor match-

ing, the special variable *event-display* is bound to the display slot of the event. The event

display may be needed to convert X resource id numbers in the data into the form used in CLX

and CLUE.

This message may be received by a top-level-shell which has selected the :wm delete window

protocol. This message indicates that the user has requested that the top-level-shell be

destroyed.

(:wm save yourself accessor-value*)

accessor-value ::= function value

This form of event speci�cation matches a :client-message event when it is a

:wm save yourself message from the session manager. If any accessor function/value pairs

are given, then the data slot of the event must match each function/value. That is, (equal

(funcall function data) value) must be true for each accessor-value. During accessor match-

ing, the special variable *event-display* is bound to the display slot of the event. The event

display may be needed to convert X resource id numbers in the data into the form used in CLX

and CLUE.

This message may be received by a top-level-session which has selected the

:wm save yourself protocol. This message indicates that the application program should save

any internal data in preparation for termination by the session manager.

(:wm take focus accessor-value*)

accessor-value ::= function value

60 CHAPTER 4. CONTACT HIERARCHY

command

A string which de�nes the value of the :wm command property of a top-level-session.

4.5.7 Changing Shell Properties

An application programmer controls the way transient-shell, top-level-shell, and top-level-session

objects interact with the window manager and the session manager by using accessors de�ned by these

classes to change slot values. In general the e�ect of using such an accessor is to send a :change-property

request which modi�es one of the standard window properties used for interclient communication. The

with-wm-properties macro allows more e�cient server communication by batching multiple changes to a

shell property into a single :change-property request.

with-wm-properties Macro

(defmacro with-wm-properties

((shell)

&body body))

The given shell may be a transient-shell, a top-level-shell, or a top-level-session.

Changes to shell slots made within the dynamic extent of the body do not immediately cause

:change-property requests to be sent. Instead, a single :change-property request for each modi�ed

shell property is sent after the body is executed.

4.5.8 Interclient Messages

Application programs may communicate with other clients, such as the window manager and the session

manager using standard protocols selected by the wm-protocols accessor. See [5] for a description of the

standard protocols for interclient communication. These protocols involve :client-message events which

are sent by the window/session manager to an application shell. The wm-message structure de�nes accessor

functions which may be used to interpret the data found in any standard :client-message event sent by

the window/session manager.

wm-message Structure

(defstruct (wm-message (:type (vector int32)))

protocol

timestamp)

De�nes the common data �elds of all standard :client-message events from a window/session man-

ager mgr. The protocol slot is the resource id number (xlib:card29) for the xlib:xatom which

identi�es the standard message type. The timestamp slot is an xlib:timestamp identifying the time

when the message was sent.

4.5. SHELLS 59

icon-mask

An xlib:pixmap which de�nes the icon mask slot in the :wm hints property of a

top-level-shell.

icon-title

A string which de�nes the value of the :wm icon name property of a top-level-shell.

icon-x, icon-y

De�ne the icon position slots in the :wm hints property of a top-level-shell.

4.5.6 Top-Level Sessions

A top-level-session is a special kind of top-level-shell used to communicate with a session manager.

According to standard interclient communication conventions[5], an application should create at least one

\main window" which is a top-level-session; typical applications use only one top-level-session. The

accessors de�ned by the top-level-session class allow the application programmer to initialize and modify

the standard top-level window properties used to communicate with the window manager. See [5], Section

5.1.1.

top-level-session Class

(defcontact top-level-session

(top-level-shell)

((client-host :type (or null xlib:stringable)

:initform nil

:initarg :client-host

:accessor sm-client-host)

(command :type (or null string)

:initform nil

:initarg :command

:accessor sm-command)))

client-host

A string which de�nes the value of the :wm client machine property of a

top-level-session.

58 CHAPTER 4. CONTACT HIERARCHY

transient-shell Class

(defcontact transient-shell

(wm-shell)

())

The top-level-shell class is the base class of normal top-level shells, with full window manager interaction.

A root shell is typically a top-level-shell.

top-level-shell Class

(defcontact top-level-shell

(wm-shell)

((colormap-owners :type list

:initform nil

:initarg :colormap-owners

:accessor wm-colormap-owners)

(icon :type (or null xlib:drawable)

:initform nil

:initarg :icon

:accessor wm-icon)

(icon-mask :type (or null xlib:pixmap)

:initform nil

:initarg :icon-mask

:accessor wm-icon-mask)

(icon-title :type (or null xlib:stringable)

:initform nil

:initarg :icon-title

:accessor wm-icon-title)

(icon-x :type (or null xlib:int16)

:initform nil

:initarg :icon-x

:accessor wm-icon-x)

(icon-y :type (or null xlib:int16)

:initform nil

:initarg :icon-y

:accessor wm-icon-y)))

colormap-owners

A list of contacts which de�nes the value of the :wm colormap windows property of a

top-level-shell.

icon

An xlib:drawable which de�nes the icon window/pixmap slot in the :wm hints property

of a top-level-shell.

4.5. SHELLS 57

(defcontact wm-shell

(shell)

((hints :type (or null xlib:wm-hints)

:initform nil

:initarg :hints

:accessor shell-hints)

(normal-hints :type (or null xlib:wm-size-hints)

:initform nil

:initarg :normal-hints

:accessor shell-normal-hints)

(protocols :type (or null list)

:initform nil

:initarg :protocols

:accessor wm-protocols)

(title :type (or null xlib:stringable)

:initform nil

:initarg :wm-title

:accessor wm-title)))

hints

An xlib:wm-hints structure which de�nes the value of the :wm hints property of a

wm-shell.

normal-hints

An xlib:wm-normal-size structure which de�nes the value of the :wm normal hints prop-

erty of a wm-shell.

protocols

A list of atom keywords which de�nes the value of the :wm protocols property of a

wm-shell.

title

A string which de�nes the value of the :wm name property of a wm-shell.

The transient-shell class is a subclass of shells which are transients for their owners. The exact mean-

ing of this relationship is de�ned by the window manager, but typically a window manager will unmap a

transient-shell when its owner becomes unmapped or iconi�ed and will not allow a transient-shell to

be individually iconi�ed. A window manager may also display a transient-shell with distinctive \deco-

ration."

56 CHAPTER 4. CONTACT HIERARCHY

4.5.3 Shell Geometry Management

The single child of a shell is referred to as its content. The basic geometry management policy implemented

by the shell class constrains a shell and its content to have the same width and height; size changes to one

are automatically applied to the other. Certain aspects of content geometry | position, border width, and

priority | are �xed or irrelevant; changes to these should be applied to the shell instead.

� Changing the width/height of a shell causes the width/height of its content to be changed to the

new size.

� Changing the width/height of the content causes the width/height of its shell to be changed to

the new size.

� Changing the border width of the content causes the content to be repositioned with respect to

its shell, so that the content border is always invisible. Border changes should be applied to the shell

instead. See the conventions for top-level window borders in [5].

� Changing the position of the content is never approved. Change the position of the shell to move

the shell/content with respect to the root.

� Changing the priority of the content is meaningless and is never approved. Change the priority

of the shell to restack the shell/content with respect to other top-level windows. See the conventions

for top-level window priority in [5].

4.5.4 Override Shells

The override-shell class is a subclass of shells which override the window manager. Use override-shell

to contain pop-up menus and other temporary objects which the user can never resize, etc. The :iconic

state is meaningless for an override-shell, which therefore can never assume this state. Setting the state

of an override-shell to :iconic causes it to become :withdrawn instead.

override-shell Class

(defcontact override-shell

(shell)

()

(:resources

(override-redirect :initform :on)))

4.5.5 Window Manager Shells

The wm-shell class is a subclass of shells which interact with the window manager. The accessors de�ned by

the wm-shell class allow the application programmer to initialize and modify the standard top-level window

properties used to communicate with the window manager. See [5], Section 4.1.2. wm-shell should not be

instantiated directly. Instead, window manager shells are always instances of one of the wm-shell subclasses

| transient-shell or top-level-shell. wm-shell Class

4.5. SHELLS 55

A shell whose parent and owner are identical is called a root shell. The default state of a root shell is

:mapped. Otherwise, the default state of a shell is :withdrawn. These defaults are convenient in the typical

case of an application with a single root shell and one or more pop-up shells.

4.5.2 Shell State

The possible values for the contact-state of a shell di�er slightly from those of ordinary contacts. Because

the parent of a shell is always a root, a shell does not have a geometry manager in the usual sense. Instead,

a window manager client will typically allow the user to de�ne control the geometry of shells and other

top-level windows interactively. Shell states, therefore, correspond to the top-level window states de�ned in

[5]:

:withdrawn The shell is invisible and unavailable for input.

:iconic Same as :withdrawn, except that the window manager

may display an alternate visual representation of the shell

(for example, an icon). The exact nature (and even the

existence) of this alternate representation depends on the

window manager.

:mapped The shell is in its \normal" state | mapped and available

for input.

Mapping (or \popping up") a shell means setting its state to :mapped. Unmapping (or \popping down")

a shell means setting its state to :iconic or :withdrawn. Mapping a shell causes its :map callback to be

invoked. Similarly, unmapping a shell invokes its :unmap callback. These callbacks allow the application

programmer to change the contents of a shell before it is mapped or after it is unmapped. The required

argument list for each of these callbacks is shown below.

:map Callback, shell

(defun map-function ())

Invoked before the state of a shell becomes :mapped.

:unmap Callback, shell

(defun unmap-function ())

Invoked after the state of a shell is changed from :mapped.

54 CHAPTER 4. CONTACT HIERARCHY

shell Class

(defcontact shell

(composite)

((state :type (member :withdrawn :iconic :mapped)

:accessor contact-state)

(owner :type composite

:reader shell-owner))

(:resources state))

Di�erent CLUE shell subclasses are used to implement four basic types of interaction with window managers

and session managers:

� override-shell

� transient-shell

� top-level-shell

� top-level-session

4.5.1 Creating A Shell

A shell is a composite that has an owner. When a shell is created, the :parent argument to make-contact

de�nes its owner. The relationship between a shell and its owner is similar to the one between a child and

its parent in the following ways.

1. When an owner is destroyed, its shells are also destroyed.

2. The complete resource name/class of a shell contains the name/class of its owner (instead of the

name/class of its parent).

However, an owner does not provide geometry management for its shells, and a shell is una�ected by changes

to the contact-state and sensitivity of its owner.

When a shell is created, if the :parent argument to make-contact is a contact-display, then:

(contact-parent shell) = (shell-owner shell)

= (display-root parent screen)

If the :parent argument is a contact, then:

(contact-parent shell) = (contact-root parent)

(shell-owner shell) = parent

4.5. SHELLS 53

The root class is a subclass of the basic composite class, but roots are di�erent from ordinary composites

in several ways.

� The parent of a root is nil.

� The geometrical attributes of a root cannot be changed.

� A root is always created automatically when its contact-display is created. A root is never created

by an application.

� The name of a root is initialized automatically when it is created. The initial resource name is

:SCREEN-n, where n is the index of the xlib:screen object in (xlib:display-roots contact-display)

3

.

� A root composite imposes no geometry management policy.

4.5 Shells

A contact whose parent is a root is called a top-level contact. A top-level contact is usually a composite at

the top of a hierarchy of other contacts created by an application program. A CLUE application program

will normally create at least one top-level contact which encapsulates user interaction for the application.

More complex applications will often use multiple top-level contacts, each representing distinct user tasks.

Top-level contacts play a special role in a user interface, because only top-level windows are subject to a user's

operations for window management (performed via a window manager client) and for session management

(performed via a session manager client). Window managers, session managers, and the conventions for

intercommunication among these clients are described in [5].

In addition, a top-level contact is often used as a pop-up | for example, a menu which \pops up" when

a command button contact is \pressed." A top-level pop-up \belongs" to another contact without being

constrained by it in position, size, or stacking order. A top-level contact therefore has both a parent, which

is always a root, and an owner, from which it may inherit resources values and other properties.

In order to simplify top-level contact programming, CLUE de�nes a composite subclass called shells. A

shell is a top-level contact which merely acts as an invisible \container" for exactly one child. From an

application programmer's point of view, the child of a shell is really the e�ective top-level contact. Pro-

grammer changes to the size of the child are automatically applied to the shell, and user changes to the size

of a shell are automatically applied to its child. The slots of a shell instance contain values which form the

window properties used to communicate with window managers and session managers. See [5] for a complete

discussion of the conventions for client window properties.

Application programmers rarely need to operate on shells, other than to access their property slots and

change their state. In return, shells encapsulate the responsibilities required of top-level windows and

conveniently integrate top-level pop-up's into the resource name hierarchy. All top-level contacts should be

shells; although this is not strictly required, the behavior of non-shell top-level contacts is not guaranteed to

be correct.

3

n � (position screen (xlib:display-roots contact-display) :test #'eq)

52 CHAPTER 4. CONTACT HIERARCHY

display-root Function, contact-display

(defun display-root

(contact-display

&optional screen-index)

(declare (values root)))

Returns the root of the contact-display speci�ed by the screen-index. If no screen-index

is given, then the default root is returned. Used with setf, this function is also an accessor for

changing the default root. Example: (setf (display-root contact-display) (display-root

contact-display 2)).

display-root-list Function, contact-display

(defun display-root-list

(contact-display)

(declare (values root-list)))

Returns a list of all root contacts belonging to the contact-display.

contact-root Function, contact

(defun contact-root

(contact)

(declare (values root)))

Returns the root to which the contact belongs.

contact-screen Function, contact

(defun contact-screen

(contact)

(declare (values screen)))

Returns the xlib:screen object associated with (contact-root contact).

Many applications will neither be aware of roots nor need to operate on them. This is particularly true in

the common case where the display has only one screen. However, the following operations on a root may

be useful to an application programmer.

� Specify a root as the parent of another contact in order to create a \top-level" contact on a speci�c

display screen.

� De�ne actions and event translations for a root

2

.

2

However, it is generally bad practice to attach application meaning to root window input events, since these are often

reserved for window managers.

4.4. ROOTS 51

Switches the keyboard input focus to a di�erent child contact and returns the new focus contact. The

new focus contact is stored in the composite focus slot. The new focus contact is determined by the

direction and the start contact. The value of direction is either :next, :previous, or :set. If

direction is :set, then the new focus contact becomes start. If direction is :next or :previous,

it determines the direction to search in the children list, starting with the start child.

If start is not given, then the current focus child is used as the default starting point.

The revert-to argument is used in a call to xlib:set-input-focus and determines the contact to

which the input focus will revert in the event that the focus contact becomes unviewable.

The primary move-focus method considers each child, starting with the child adjacent to start in

the given direction. The �rst child for which (accept-focus-p child) is non-nil is then returned.

4.4 Roots

All of the contacts belonging to a contact-display form a set of hierarchies. The root of each hierarchy is

a special type of composite contact referred to as a root.

root Class

(defcontact root

(composite)

((screen :type xlib:screen

:initarg :screen)))

screen

The xlib:screen object represented by the root.

All of the contacts descended from a root appear on the same screen of the contact-display. A root

represents a display screen in two ways. First, a root typically corresponds to the root window of the screen

and inherits all of its properties

1

. Input received by a root window will be dispatched to its root contact.

Second, the xlib:screen object may be accessed as a slot of the root.

The set of root objects belonging to a contact-display is created automatically when the contact-display

itself is created, and is never subsequently modi�ed. Each contact-display has a default root which may

be used as the default parent of newly-created contacts (see make-contact, Section 2.1.1). The default

root is typically determined by the :default-screen argument to open-contact-display. Alternatively,

the default root may be inquired or modi�ed using the display-root function.

1

In some environments, a window manager may establish a non-root window as the top-level \parent window", in which

case the root will correspond to the \parent window" instead.

50 CHAPTER 4. CONTACT HIERARCHY

Called whenever the set of managed children of the composite changes. This method is expected

to make any changes to the geometry or priority of the new managed set which are required by the

composite's geometry management policy.

change-layout is called once when a new composite is realized. After a composite is realized,

change-layout is called whenever a managed child is created or destroyed or in response to a change

in the state of a child. When a new managed child is created, it is given as the value of the optional

newly-managed argument. Certain geometry managers may choose to treat a newly-managed child

specially when enforcing geometry constraints among its managed children.

The primary change-layout method simply calls (change-geometry child :accept-p t) to vali-

date the current geometry of each managed child.

The initial geometry of a contact is also determined by the geometry management policy of it parent compos-

ite. Just before a composite is realized, the initialize-geometry function is called to negotiate the initial

geometry of all descendants of a composite. This function is called automatically by update-state and

rarely needs to be invoked directly by application programmers or contact programmers. In some cases, a

CLUE program may call initialize-geometry in order to complete initial geometry management without

realizing a composite.

initialize-geometry Method, composite

(defmethod initialize-geometry

((composite composite)))

Computes the initial geometry for the composite and all of its descendants. initialize-geometry is

called recursively for each composite child that is both managed and unrealized. Then, change-layout

is called to arrange all children according to the geometry management policy of the composite.

4.3 Focus Management

A single child, which is contained in the composite focus slot, is usually designated to serve as the current

\keyboard representative" for the composite. A composite provides a method for switching the keyboard

input focus between the contacts in its children list. In general, this method calls the accept-focus-p

method of a child contact before setting it as the keyboard input focus.

move-focus Method, composite

(defmethod move-focus

((composite composite)

&optional (direction :next)

&key start

revert-to))

4.2. GEOMETRY MANAGEMENT 49

Any of the x, y, width, height, or border-width arguments may be nil, indicating a \don't care"

value for the requested change. A geometry manager may also interpret a nil value to mean \just use

the current value." Note: manage-geometry should never approve the request if the width or height

is 0. Such a value is invalid and represents an \uninitialized" condition, for which manage-geometry

must suggest an alternative.

The lambda list for this generic function includes &key so that contact programmers can de�ne methods

with additional keyword arguments.

manage-priority Method, composite

(defmethod manage-priority

((composite composite)

contact

priority ;(member :above :below :top-if :bottom-if :opposite)

sibling

&key)

(declare (values success-p

priority

sibling)))

Called by change-priority to change the stacking priority of the contact. See the CLX function

xlib:window-priority for a description of the priority and sibling arguments. If the requested

change is approved, then the �rst value returned is non-nil. Otherwise, the change is not approved

and the �rst value returned is nil; in this case, the remaining return values suggest an acceptable

compromise request. If only nil is returned, no geometry change is allowed.

Either of the priority or sibling arguments may be nil, indicating a \don't care" value for the

requested change. A geometry manager may also interpret a nil value to mean \just use the current

value."

The lambda list for this generic function includes &key so that contact programmers can de�ne methods

with additional keyword arguments.

change-layout Method, composite

(defmethod change-layout

((composite composite)

&optional newly-managed))

48 CHAPTER 4. CONTACT HIERARCHY

of the class or function of the contact. However, some composite contacts will make use of speci�c knowledge

about their children in order to perform geometry management.

Placing geometry control in the hands of a geometry manager in this way has several advantages.

� A geometry manager can arbitrate the competing geometry change requests of several contacts in order

to implement contraints among them.

� A given layout style can be applied to any collection of contacts.

� Contact layout style can be changed without the knowledge of individual contacts.

A request to change the geometry of a contact is forwarded to the contact's parent, which actually performs

the resulting change. It is important to understand that, due to its constraints, a geometry manager may

not be able to perform a change as requested. For example, a request to increase the size of a contact

might be refused if its geometry manager enforces a maximum size. If a requested change cannot be done,

a geometry manager should suggest a slightly di�erent change which would be acceptable. Frequently, a

geometry manager will want a child to compute a suitable geometry for itself; this can be done by calling

the preferred-size function.

A composite's geometry management policy applies only to the set of its children which are managed. Any

child whose state is :withdrawn is ignored by a geometry manager. Any geometry change to a :withdrawn

child is performed immediately as requested.

Geometry management is implemented by the following methods of the composite class.

manage-geometry Method, composite

(defmethod manage-geometry

((composite composite)

contact

x

y

width

height

border-width

&key)

(declare (values success-p

x

y

width

height

border-width)))

Called by change-geometry to change the geometry of the contact. If the requested change is

approved, then the �rst value returned is non-nil; the remaining return values then give the new

geometry of the contact. Otherwise, the change is not approved and the �rst value returned is nil;

in this case, the remaining return values suggest an acceptable compromise geometry. If only nil is

returned, no geometry change is allowed.

4.2. GEOMETRY MANAGEMENT 47

Called automatically when the child contact become a child of the composite (either by child creation

or reparenting). This method adds the child to the children list and implements the result of the

insertion on the order of the children list.

composite contacts may have various ways of ordering their children, usually for geometry manage-

ment purposes. For example, a composite containing a set of command buttons may want to sort the

buttons in alphabetical order or to group them by function. A contact programmer may rede�ne the

add-child method to implement the required ordering. The primary method for add-child simply

appends the new child to the end of the children list.

The lambda list for this generic function includes &key so that contact programmers can de�ne methods

with additional keyword arguments.

delete-child Method, composite

(defmethod delete-child

((composite composite)

child

&key))

Called automatically when the child contact leaves the children list of the composite (either by child

destruction or reparenting). This method removes the child from the children list and implements

the result of the deletion on the order and geometry of the children list.

The lambda list for this generic function includes &key so that contact programmers can de�ne methods

with additional keyword arguments.

(setf contact-parent) Method, contact

(defmethod (setf contact-parent)

(new-parent

(contact contact)

&key x y)

(declare (values composite)))

\Reparents" the contact by making it a child of the new-parent. x and y give the position of the

contact with respect to the origin of its new-parent; if omitted, then the contact's relative position

is unchanged.

4.2 Geometry Management

A composite is expected to act as the geometry manager for its child contacts; that is, to control the

geometrical properties of its children. As a geometry manager, the role of composite is to implement a style

of layout for its children. In general, a composite may operate on a contact's window without any knowledge

46 CHAPTER 4. CONTACT HIERARCHY

composite Class

(defcontact composite

(contact)

((children :type list

:initform nil

:reader composite-children)

(focus :type contact

:initform nil

:reader composite-focus)

(shells :type list

:initform nil

:reader composite-shells))

(:resources

(event-mask :type (or null xlib:event-mask)

:initform (xlib:make-event-mask))

(focus-name :type symbol)))

children

A list of the contacts which are the children of the composite. CLUE automatically ensures

that this slot value is always consistent with the window hierarchy stored by the X server.

This slot should be modi�ed only as a side-e�ect of contact creation, destruction, and

reparenting; it should never be modi�ed directly.

focus

The member of children which is currently designated as the keyboard input focus for

the composite. This slot is nil if no focus has been designated. Designating a contact as

the composite focus does not necessarily redirect keyboard events. Rather, the focus is

the current \keyboard representative" for the composite; assigning the keyboard focus to

the composite then usually results in assigning it to the focus contact.

shells

A list of shell contacts owned by the composite. See Section 4.5

add-child Method, composite

(defmethod add-child

((composite composite)

child

&key))

Chapter 4

Contact Hierarchy

4.1 Composites

A contact which is the parent of another contact is known as a composite. A composite may be the parent

of another composite, leading to a tree-structured contact hierarchy. Contact A is said to be an ancestor

of contact B (its descendant) when A is B's parent or an ancestor of B's parent.

A composite represents a set of contacts which can be manipulated (positioned, presented, etc.) as a unit. A

composite is useful whenever several contacts act in concert to provide a single component of the application's

user interface. Typical examples include \control panels" and \dialog boxes" | groups of contacts that are

presented together and are used to make related adjustments to application data. In some cases, operations

on one member of such a structure may change the appearance of another. The composite is the mechanism

which allows the operations of its members to be coordinated.

The fundamental aspects of the contact parent-child relationship are the same as those of the window

hierarchy de�ned by the X Window System. In addition, a composite furnishes geometry management and

focus management services for its children.

A composite is an instance of the composite class, a subclass of the basic contact class.

45

44 CHAPTER 3. INPUT

3.8.6 Event Compression

CLUE allows the programmer de�ning a contact class to ignore certain redundant input events in or-

der to improve contact performance. \Compression" of redundant events is controlled by the class slots

compress-exposures and compress-motion, which are shared by all instances of a contact class.

Contacts which respond to changes in the pointer position may �nd it di�cult to keep up with a rapidly-

moving mouse and, in fact, may not need to recognize every individual motion event. Initializing the

compress-motion slot to :on will cause all but the last in a sequence of consecutive :motion-notify events

to be ignored, with only the most recent event being dispatched to the contact.

Simple contacts may �nd it more e�cient always to display the entire contact image, ignoring x, y, width,

and height arguments to the display method. Such contacts will not be interested in partial exposure

events. Initializing the compress-exposures slot to :on will result in :exposure events being dispatched

to the contact only when the expose count is zero (i.e. the last of a series of partial exposure events).

3.8. CONTACT INPUT PROGRAMMING 43

Returns or (with setf) changes the way that multipress event sequences are veri�ed for the given

contact-display. When true, timeout is veri�ed by requesting a timestamp from the X server.

When nil, multipress handling will be faster but some double-clicks may be incorrectly interpreted as

two single-clicks. The default value is given by the *default-multipress-verify-p* special variable.

default-multipress-delay-limit Variable

(defvar *default-multipress-delay-limit* 250)

The default maximum number of milliseconds between events in a multipress sequence.

default-multipress-verify-p Variable

(defvar *default-multipress-verify-p* t)

The default multipress timeout veri�cation switch. When true, timeout of multipress events is veri�ed

by requesting a timestamp from the X server. When nil, multipress handling will be faster but some

double-clicks may be incorrectly interpreted as two single-clicks.

3.8.5 Contact Sensitivity

Occasionally, an application may want a component of its user interface to be visible but temporarily

unavailable for input. For example, a menu might be used to present all application commands, although

some commands may not be valid at all times. Therefore, a contact can either be \sensitive" or \insensitive"

to input. When a contact is insensitive, events of the following type are not dispatched to the contact and

are ignored.

� :button-press

� :button-release

� :enter-notify

� :focus-in

� :focus-out

� :key-press

� :key-release

� :leave-notify

� :motion-notify

Also, the sensitivity of a contact is typically represented visually. For example, an insensitive contact may

be displayed in a distinctive color, greyed out, or stippled.

A contact is insensitive if the value of its sensitive slot is :off, or if its parent is insensitive. Conversely,

a contact is sensitive if and only if it and all of its ancestors have a value of :on for sensitive.

42 CHAPTER 3. INPUT

a :button-release event for the same button, with no intervening change in pointer position

5

or modi�er

key state. A \double-click" is a sequence of two clicks of the same button in rapid succession. The de�nition

of a double-click \event" is thus time-sensitive; for a double-click to be recognized, the time interval between

events in the sequence cannot exceed a certain maximum. The display-multipress-delay-limit accessor

de�nes the maximum inter-event time interval, in milliseconds, for a given contact-display.

During event translation for a :button-press event, CLUE will invoke double-click processing when it

attempts to match a :button-press event speci�cation containing the :double-click keyword (see Sec-

tion 3.8.1). CLUE then looks ahead into the event stream, checking for the remainder of the double-click

sequence. If a double-click is recognized, then the event speci�cation is matched, the corresponding actions

are invoked with the initial :button-press event, and the rest of the double-click events are discarded.

Otherwise, the match fails, all events remain in the event stream, and event translation continues. The

:double-click keyword can also appear in a :button-release event speci�cation. In this case, CLUE

attempts to match the event speci�cation by looking ahead for a subsequent click sequence. If a click

is found, then the event speci�cation is matched, the corresponding actions are invoked with the initial

:button-release event, and the rest of the click events are discarded. Otherwise, the match fails, all events

remain in the event stream, and event translation continues.

The :single-click keyword can be used to explicitly request CLUE double-click processing, in order to

verify that a double-click sequence has not occurred. An event speci�cation containing the :single-click

keyword will be matched only when the event is not followed by the rest of a double-click sequence. This

form of event speci�cation allows a contact to reliably specify actions for both single- and double-click

event sequences, with no dependence on the relative order of :single-click and :double-click event

translations.

Detecting when the display-multipress-delay-limit timeout has lapsed is complicated by the possi-

bility of network delays in receiving events from the X server. Timestamps maintained by the X server

can be used to verify a timeout, at the expense of a message round-trip between the client and the

server. CLUE clients can optionally select such timeout veri�cation for a contact-display by using the

display-multipress-verify-p accessor.

display-multipress-delay-limit Macro, contact-display

(defmacro display-multipress-delay-limit

(contact-display)

(declare (values number)))

Returns or (with setf) changes the multipress delay limit timeout for the given contact-display.

This de�nes the maximum inter-event time interval, in milliseconds, for a multipress event sequence

to be recognizable. The default value is given by the *default-multipress-delay-limit* special

variable.

display-multipress-verify-p Macro, contact-display

(defmacro display-multipress-verify-p

(contact-display)

(declare (values number)))

5

Implementation Note: In practice, very small pointer movements (\jitter") should be ignored during double-click processing.

3.8. CONTACT INPUT PROGRAMMING 41

Returns a list of actions associated with the given contact and event speci�cation. Each element

of the returned actions list is either an action name symbol or a list of the form (action-name

argument*).

A process similar to that used by translate-event is used to locate an event translation containing

the event-spec, either in the contact's event-translations or among its class event translations.

If no such event translation is found, then nil is returned.

defevent Macro

(defmacro defevent

(class

event-spec

&rest actions))

Creates a class event translation for the class. Each additional argument is either an action name

symbol or a list of the form (action-name argument*). The new event translation replaces any existing

class event translation for the same event speci�cation.

undefevent Macro

(defmacro undefevent

(class

event-spec

&rest actions))

Deletes a class event translation for the class. The actions are ignored; they are included only for

consistency with the syntax of defevent.

describe-event-translations Function

(defun describe-event-translations

(contact

&optional (stream *standard-output*)))

Prints a description of the event translations for a contact class or a contact instance on the given

stream. If contact is a class symbol, then this function prints a description of each class event

translation for the given class and for each superclass in its class precedence list. If contact is a

contact instance, then the contents of its event-translations is also printed.

3.8.4 Double-click Events

CLUE provides for the automatic recognition of \double-clicks" by treating these as specially modi�ed

:button-press or :button-release events. A \click" is a :button-press event followed immediately by

40 CHAPTER 3. INPUT

handle-event Method, contact

(defmethod handle-event

((contact contact)

event))

Performs all contact processing for the given event. The primary method for the contact class calls

translate-event and invokes all actions that match the event.

translate-event Function, contact

(defun translate-event

(contact

event)

(declare (values actions)))

Looks up the event translation that matches the event, using the algorithm described in Section 3.8.3,

and returns the list of actions found in the matching event translation.

add-event Function, contact

(defun add-event

(contact

event-spec

&rest actions))

Creates an event translation associating the event speci�cation with the given action symbols in the

contact's event-translations. Each additional argument is either an action name symbol or a list

of the form (action-name argument*). If an event translation for the given event speci�cation already

exists, then its previous actions are replaced by the new actions, without changing its position in the

event-translations. Otherwise, a new event translation is created and added as the �rst element of

the event-translations.

delete-event Function, contact

(defun delete-event

(contact

event-spec))

Removes any event translation for the event speci�cation from the contact's event-translations.

event-actions Function, contact

(defun event-actions

(contact

event-spec)

(declare (values actions)))

3.8. CONTACT INPUT PROGRAMMING 39

The event-translations slot contains a lookup table

4

whose elements are event translations. Each

event translation is a list of the form (event-speci�cation name*), where each name is either an action

name or a list of the form (action-name argument*) . Thus, each event translation in event-translations

associates an event speci�cation with one or more actions and, for each action, an optional argument list.

The event translations in a contact's event-translations slot can be modi�ed by the functions add-event

and delete-event.

Class event translations are event translations which belong to all instances of a contact class. A class

event translation is created by the defevent macro.

Basic contact event processing consists of the following steps:

� For each event translation in the contact's event-translations:

{ The event is matched with the event speci�cation found in the event translation. Matching is

done using the match function for the event type de�ned by the event speci�cation.

{ If a match occurs, then each of the actions in the event translation is called and event processing

terminates. Any arguments from the matching event translation are given to the actions.

� If no match is found in the previous step, then the contact's class event translations are examined.

Starting with the class of the contact, then for each class event translation of the class:

{ The event is matched against the event speci�cation found in the class event translation.

{ If a match occurs, then each of the actions in the event translation is called, using any arguments

given, and event processing terminates.

� If no match is found, then the previous step is repeated for the next class in the class precedence list.

This method of structuring contact event processing allows a user and a contact programmer to cooperate

in de�ning a contact's input behavior. Event translations are a contact resource; they can be read from a

user-de�ned resource database and used to initialize a contact's event-translations when the contact is

created (see Chapter 6 for a complete discussion of contact resource management). Event translations express

user preferences for the mapping between input events and actions. On the other hand, only the contact

programmer can determine the methods which actually implement the actions. The contact programmer

can also provide class event translations to de�ne default input behavior shared by all instances of a contact

class.

Most types of events can be received by a contact only if they are selected by the contact's event-mask.

CLUE automatically initializes a contact's event-mask slot to select all event types referenced by its

event-translations slot and its class event translations. The event-mask is also modi�ed appropriately

by add-event and delete-event. As a result, CLUE programmers rarely need to modify a contact's

event-mask slot directly.

CLUE initiates contact event processing by calling the contact's handle-event method. By default, this

method simply processes an event according to the contact's event translations and class event translations.

However, some contact classes may rede�ne the handle-event method in order to add input processing

unrelated to event translations. handle-event calls translate-event in order to determine which actions

will be invoked.

4

Implementation Note: The event-translations slot is conceptually an association list but need not be implemented as

one.

38 CHAPTER 3. INPUT

(defmacro check-function

(keyword)

(declare (type keyword keyword))

(declare (values function)))

Returns or (with setf) changes the check function for the given event type keyword. The keyword

must be an event key de�ned by CLX.

The general interfaces required for check/match functions are described below.

(defun a-check-function

(&rest event-spec)

(declare (values match-function-spec

canonical-event-key)))

A check function is de�ned by the check-functionmacro. It is called to validate an event speci�cation

list whose �rst element is the keyword-symbol.

A check function signals an error if the event-spec is syntactically invalid. Otherwise, the �rst return

value is a list of the form (match-function . canonical-event-spec). The car of this list is a function

object which is the corresponding match function. The cdr of the list is the event speci�cation in

its \canonical form" (i.e. the form required by the match function). The check and match functions

can thus establish an internal form of the event speci�cation which optimizes matching. The second

return value, if non-nil, is a di�erent event key to be used during matching. For example, the default

check function for :up will return :key-release as its second value.

(defun a-match-function

(event

&rest canonical-event-spec)

(declare (values boolean)))

A match function is returned by the check function of a keyword-symbol. It is called to match an

event with an event speci�cation list whose �rst element is the keyword-symbol.

A match function is a predicate which returns non-nil if the canonical-event-spec computed by

the corresponding check function matches the given event.

3.8.3 Event Translation

If an input event is received by a speci�c window, then that window is given as a slot value in the corre-

sponding event object. CLUE begins by determining the contact corresponding to the event window and

calling the contact's handle-event method. Subsequent contact event processing involves \translating" the

event into calls to the appropriate actions and is controlled by the contact's event-translations slot and

its class event translations.

3.8. CONTACT INPUT PROGRAMMING 37

(:key-press [key [state [select]]])

(:key-release [key [state [select]]])

(:up character)

key ::= character j keysym j :any

This form of event speci�cation matches any :key-press or :key-release event with the given

event-character or event-keysym and with the given state of the modi�er keys. By default,

key is :any, in which case the event-character and event-keysym are ignored during matching.

(:up character) is an abbreviation for (:key-release character). A character is typically a

Common Lisp character object, but in general it can be any object associated with a keysym

via the xlib:define-keysym function (see CLX[8]).

The state and select options operate as described above. However, for this form of event speci-

�cation, when key is a character, then the default value of select is 0 (i.e. no modi�er keys are

selected). This is because the character object already contains modi�er state information, as a

result of the keysym-to-character transformation done by CLX.

(:client-message type accessor-value*)

accessor-value ::= function value

This form of event speci�cation matches a :client-message event when its type slot matches

the given type. The type must be an xlib:xatom. If any accessor function/value pairs are given,

then the data slot of the :client-message event must match each function/value. That is,

(equal (funcall function data) value)must be true for each accessor-value. During accessor

matching, the special variable *event-display* is bound to the display slot of the event. The

event display may be needed to convert X resource id numbers in the data into the form used

in CLX and CLUE.

3.8.2 De�ning New Event Speci�cations

The syntax for event speci�cations can be extended to include new speci�cation list forms de�ned by the

programmer. The most general form of an event speci�cation list is (keyword-symbol argument*). The CLUE

interface to this general form is de�ned by two functions: a check function, which veri�es the syntactical

correctness of the list, and a match function, which matches event objects with the list. The check function

for a keyword-symbol may be returned or changed by the check-function macro.

check-function Macro

36 CHAPTER 3. INPUT

This form of event speci�cation matches any :motion-notify event with the given state of the

modi�er keys. The state and select options are used to specify the state of the modi�er keys

required for an event to match the event speci�cation.

state is a set which speci�es the state of modi�er keys: the down state for modi�er keys which

belong to state and the up state for those that do not. state defaults to :none, which is

equivalent to the empty set. select speci�es the set of modi�er keys whose state is examined

during matching. select defaults to :same, which means \same as the state set". The select

value :all means that all modi�er keys are considered. The state value :any is a more readable

notation for the default values; it is equivalent to a state of :none and a select of :same. Either

state or select may given as a bit string (i.e. an xlib:mask16 value) in which a 1 bit means that

the corresponding modi�er key is an element of the set.

A :motion-notify event matches the event speci�cation only if the following conditions are

satis�ed.

� Every modi�er key in select has the state (up or down) indicated by state.

� If there are modi�ers keys in state which do not belong to select, then at least one of them

is down. This is a way to treat such a set of modi�ers as \equivalents" without requiring

a speci�c state for each of them.

(:button-press [button [bstate [select]]])

(:button-release [button [bstate [select]]])

button ::= :any j :button-1 j :button-2 j :button-3 j :button-4 j :button-5

bstate ::= :none j :any j click-state-key j (click-state-key*) j xlib:mask16

click-state-key ::= :shift j :lock j :control j

:mod-1 j :mod-2 j :mod-3 j :mod-4 j :mod-5 j

:meta j :super j :hyper j

:button-1 j :button-2 j :button-3 j :button-4 j :button-5 j

:single-click j :double-click

This form of event speci�cation matches any :button-press or :button-release event with

the given state of the modi�er keys. If button is given, then only events with the given button in

event-code are matched. By default, button is :any, in which case the event-code is ignored

during matching.

The select option operates as described above. The bstate option operates the same as the state

option above. However, bstate may also contain either a :single-click or a :double-click

keyword. These keywords, which control the matching of \double-click" events, are described

in Section 3.8.4.

3.8. CONTACT INPUT PROGRAMMING 35

delete-timer Function, contact

(defun delete-timer

(contact

&optional name))

Destroys the contact timer with the speci�ed name. If no name is given, then all timers belonging to

the contact are destroyed. The return value is nil if and only if no contact timer of the given name

exists.

3.8 Contact Input Programming

This section describes the CLUE interfaces used by a contact programmer to de�ne contact input responses.

3.8.1 Event Speci�cations

CLUE input processing consists of matching an event with an event speci�cation found in a contact's

event-translations slot, and then calling actions associated with the matching event speci�cation. An

event speci�cation is a notation for describing a speci�c type of event. Syntactically, it is one of the

following.

event key A keyword symbol which is the name for an event type (i.e. the value of the key slot of an event

object). This form of event speci�cation matches any event which has this key.

character A Common Lisp character object. This form of event speci�cation matches any :key-press

event with this object as its character.

list A list of the form (keyword value*). Certain list forms are already de�ned by CLUE and

are described below. Programmers can de�ne new list forms using the interfaces described in

Section 3.8.2.

(:motion-notify [state [select]])

state ::= :none j :any j state-key j (state-key*) j xlib:mask16

select ::= :same j :all j state-key j (state-key*) j xlib:mask16

state-key ::= :shift j :lock j :control j

:mod-1 j :mod-2 j :mod-3 j :mod-4 j :mod-5 j

:meta j :super j :hyper j

:button-1 j :button-2 j :button-3 j :button-4 j :button-5

3

Implementation Note: An implementation is permitted to check for the next elapsed timer interval only before reading the

next input event. This may a�ect timing accuracy when an event results in lengthy application processing.

34 CHAPTER 3. INPUT

Any bu�ered requests are sent and all resulting input events are processed, using the following algo-

rithm.

� Call (xlib:display-finish-output contact-display) to send any bu�ered requests and re-

ceive any resulting events.

� If any events were received, process each of them via (process-next-event contact-display

:timeout 0) and then repeat the previous step.

3.7 Timers

CLUE provides support for animation and other types of time-sensitive user interfaces via objects called

timers. A timer is a source of :timer events, inserting them into the event stream of a contact-display

according to a speci�c time interval. A timer causes :timer events to be dispatched to a speci�c contact for

processing.

A :timer event is de�ned by CLUE and is represented by an event object with the following non-nil slot

values.

key :timer

contact timer contact

name timer name

data timer data

display contact-display

Timers are abstract \objects" that are not actually represented as CLOS class instances, but instead are

de�ned solely by the following functional interfaces.

add-timer Function, contact

(defun add-timer

(contact

name

interval

&optional data)

(declare (values name)))

Creates a timer with the given name symbol. The new timer replaces any existing timer with the

same name. The new timer sends a :timer event to the contact-display associated with the given

contact each time the speci�ed time interval (given in seconds) elapses

3

. Such :timer events are

dispatched to the given contact and also contain any given application data (see description of :timer

event above). The timer name is returned.

A timer is automatically destroyed when its associated contact is destroyed.

3.6. SYNCHRONIZING EVENT PROCESSING 33

The event loop should be terminated by a throw to an application-de�ned loop-exit-tag.

process-next-event Function, contact-display

(defun process-next-event

(contact-display

&key timeout))

Reads the next input event from the contact-display and processes it. If no event is received within

the speci�ed timeout interval (given in seconds), then process-next-event returns nil; a timeout

of nil means to wait forever. Otherwise, process-next-event returns t.

Before reading an event, process-next-event calls update-state to ensure that the display is con-

sistent with the current state of contacts belonging to the contact-display (see Section 2.1.2).

After an event has been read, the following algorithm is used.

� The contact receiving the event is determined.

� All before actions de�ned for subclasses of the contact's class are called.

� The contact's handle-event method is called. The handle-event method invokes the process

of \event translation," during which the appropriate actions are called to handle the event. See

Section 3.8.3) for a complete description of event translation.

3.6 Synchronizing Event Processing

A complex operation, such as presenting a large contact tree, often takes the form of a \chain reaction,"

wherein the input events which precipitate from contact actions are processed to invoke still more actions

and events, etc. In order to synchronize its user interface, an application will sometimes need to wait until

the complete chain of events has been processed before continuing the event loop. This synchronization of

event processing is achieved by using the process-all-events function.

process-all-events Function, contact-display

(defun process-all-events

(contact-display))

32 CHAPTER 3. INPUT

add-before-action Function, contact-display

(defun add-before-action

(contact-display

class

action

&rest arguments))

Adds a new before action for the given class to the contact-display. The action replaces any

existing before action with the same name and class. Any arguments given will be passed to the

action when it is called. The arguments must correspond to the lambda-list of the action function.

delete-before-action Function, contact-display

(defun delete-before-action

(contact-display

class

action))

Removes from the contact-display any existing before action whose name is given by the action

symbol and whose class is given by the class symbol .

before-actions Function, contact-display

(defun before-actions

(contact-display)

(declare (values actions)))

Returns the list of before actions for the contact-display. Each element of the list returned is a list

of the form (class-name action-name argument*).

3.4.2 Modal Input

(to be completed)

3.5 The Event Loop

The process-next-event function implements the body of the application event loop. process-next-event

reads an input event from a contact-display and dispatches it for processing. Using this function, a typical

application event loop will have the form shown below.

(catch loop-exit-tag

(loop

(process-next-event contact-display)))

3.4. GLOBAL EVENT PROCESSING 31

Throws to the tag, returning the value.

trace-action Action, contact

(defmethod trace-action

((contact contact)

&rest exceptions))

Prints the the action event type and the contact name. Output is sent to the stream given by the

special variable *trace-output*. However, nothing is printed if the action event type is a member of

the set of event type keywords given by exceptions.

ignore-action Action, contact

(defmethod ignore-action

((contact contact)))

Used to notify the user that an event has been ignored. The primary method sounds the bell at the

X display server.

3.4 Global Event Processing

CLUE de�nes operations on a contact-display object that provide for global event processing that is

independent of the event processing implemented by individual contact instances.

3.4.1 Before Actions

A before action of a contact-display is an action which is called when an event is dispatched to a contact,

but before any other contact input processing is performed. Before actions are useful for implementing various

kinds of application-dependent event preprocessing. For example, an application could de�ne a before action

for the contact class that will record every event in a log �le.

Associated with a contact-display is a list of before actions. Each event received by a contact-display is

compared with every element of its before actions list. If c is the class for which the before action is de�ned,

and if contact is the contact instance to which the event has been dispatched, then the before action is

called if (typep contact c) is true.

The following functions control the before actions of a contact-display.

30 CHAPTER 3. INPUT

perform-callback Action, contact

(defmethod perform-callback

((contact contact)

callback-name

&rest args))

Invokes the given callback via (apply-callback contact callback-name args).

describe-action Action, contact

(defmethod describe-action

((contact contact)

&rest exceptions))

Prints a full description of the action event. Output is sent to the stream given by the special variable

trace-output. However, no description is printed if the action event type is a member of the set

of event type keywords given by exceptions.

eval-action Action, contact

(defmethod eval-action

((contact contact)

&rest forms))

Evaluates the given forms. The special variable *contact* is bound to contact.

apply-action Action, contact

(defmethod apply-action

((contact contact)

function

&rest args))

Calls the function with the given arguments. The special variable *contact* is bound to contact.

throw-action Action, contact

(defmethod throw-action

((contact contact)

tag

&optional value))

3.3. ACTIONS 29

keysym

For :key-press and :key-release events, this slot contains the xlib:keysym object

corresponding to the code. This slot is useful in the case where the event-keysym does

not correspond to any Common Lisp character.

name

For a :timer event, this slot contains the symbol which is the name of the timer. See

Section 3.7.

3.3 Actions

An action is a function which is called to process an input event received by a contact instance. An action

function accepts an argument list consisting of a contact instance and possibly additional arguments. An

action implements a response to the given event which is performed by all instances of a contact class.

Actions are often generic functions with methods de�ned for speci�c contact classes. All responses of a

CLUE application to its user input are occur via actions. Typically, actions invoke contact callbacks in order

to report the results of user input back to the application.

In general, an action represents a well-de�ned contact behavior that might be done in response to any event.

Contact programmers and users can cooperate in de�ning how user events are bound to contact actions (see

Section 3.8.3). In some cases, however, an action may be designed to handle a very speci�c event type. The

with-event macro can be used inside the body of an action in order to access slots of the event which

caused the action to be called.

with-event Macro

(defmacro with-event

(slots

&body body))

Creates a lexical context in which the body forms containing references to the speci�ed slots

of an event instance are executed. This macro may appear only inside the dynamic extent of

process-next-event. It allows actions and other functions to access slots of the event currently

being processed.

The slots argument is a list which has the same syntax as in the CLOS macro with-slots. Each

member of the slots list is either an event slot name or a list of the form (variable-name slot-name).

The body may reference an event slot only by using a slot name or variable-name found in slots.

Access to the current event is intentionally restricted so that implementation of event objects can be

optimized safely.

The following actions are general utilities which are prede�ned by CLUE for the basic contact class.

28 CHAPTER 3. INPUT

event Class

(defclass event

()

(above-sibling atom border-width

character child code

colormap configure-p contact

count data display

drawable event-window focus-p

format height hint-p

installed-p key keymap

keysym kind major

minor mode name

new-p override-redirect-p parent

place property requestor

root root-x root-y

same-screen-p selection send-event-p

state target time

type width window

x y))

The names and meanings of most event slots are described by CLX[8] and are not discussed in detail here.

However, CLUE extends the basic event representation to include the following additional event slots.

character

For :key-press and :key-release events, this slot contains the Common Lisp character

object corresponding to the code, the modi�er state, and the current keymap of the

display.

contact

The contact to which the event is dispatched.

display

The contact-display from which the event was read.

key

An event keyword symbol which identi�es the type of the event.

3.2. EVENTS 27

protocol

Speci�es the X protocol version and extension used. See xlib:open-display for a descrip-

tion of this option.

root-class

Speci�es the contact subclass used to create root contacts. This option is useful only for

specialized clients such as window managers.

default-host Variable

(defvar *default-host* nil)

Used by open-contact-display as the default host name. If nil, *default-host* is set to the :host

given the �rst time open-contact-display is called.

default-display Variable

(defvar *default-display* 0)

Used by open-contact-display as the default host display id.

3.2 Events

Input from an X server arrives asynchronously in the form of input events. The basic set of input events

and their contents are de�ned by the X Window System protocol.

CLUE uses the event class to represent an input event as an object. The event data structure has a slot for

each value that appears in any X input event (i.e. each keyword declared by a xlib:declare-event form

in CLX). For any actual input event, only a subset of the slots of the corresponding event object will be

meaningful; the irrelevant slots always have a nil value.

26 CHAPTER 3. INPUT

name

The application-speci�c name of the contact-display. Technically, this is an application

resource name symbol which is the top-level component of the complete resource name for

each application contact. See Section 6.2 for a discussion of complete resource names.

class

The application-speci�c class of the contact-display. Technically, this is an application

resource class symbol which is the top-level component of the complete resource class for

each application contact. See Section 6.2 for a discussion of complete resource classes. If

omitted, this defaults to the contact-display name.

host

A host name for an X display server

2

. If omitted, the value of the special variable

default-host is used.

display

An integer identifying a display on the host. If omitted, the value of the special variable

default-display is used.

before-actions

A list of before actions which de�ne application event preprocessing. See Section 3.4.1.

default-screen

The index of the default xlib:screen. This determines the default contact-display root

used to create contacts. See Section 4.4.

authorization-name, authorization-data

These options control a host-dependent access control facility. See xlib:open-display for

a description of these options.

2

The types of values allowed for a host name depend on the implementation of CLX. Typically, host names are strings.

3.1. THE CONTACT DISPLAY 25

these mappings can be read from a resource database as contact resources, a user can tailor a contact's input

responses to suit his preferences. Event translation and other aspects of contact input programming are

described in Section 3.8.

3.1 The Contact Display

The contact-display object type de�nes the fundamental mechanisms for associating a contact with a

CLX xlib:display object and for dispatching interactive input events to the contacts which will process

them.

A contact-display object inherits the behavior of a CLX display object and can be substituted wherever

a xlib:display is allowed

1

. An application will usually create a single contact-display which represents

the connection through which requests are sent to an X server and input events are received.

The basic operations on a contact-display are listed below and are described in detail in other parts of

this document.

� Read and process an input event (see Section 3.5).

� Read character input from interactive stream contacts (see Section 7.3).

� Establish global processing of input events (see Section 3.4).

� Inquire the available display roots (see Section 4.4).

� Inquire or change the default display root (see Section 4.4).

The open-contact-display function is used to create a contact-display object and to connect it to an

X server.

open-contact-display Function

(defun open-contact-display

(name

&key class

(host *default-host*)

(display *default-display*)

before-actions

(default-screen 0)

authorization-name

authorization-data

protocol

(root-class 'root))

(declare (values contact-display)))

Creates and opens a new contact-display. The contact-display is connected to the X server

speci�ed by host and display.

1

Implementation Note: The contact-display object type could be implemented as a CLOS class, but its speci�cation is

intended to permit other representations as well. A class de�nition may not be necessary, since subclassing of this object type

is not expected.

Chapter 3

Input

CLUE de�nes the contact-display object type, which represents the basic input processing of an interactive

application and which supports the event loop model for application input. (The more specialized stream

I/O model provides a simpler application interface to user interaction, based on interactive stream

contacts. See Chapter 7.)

In the event loop model, an interactive application has the following generic structure.

� Create and initialize the contact-display.

� Create and initialize contacts.

� Read an input event and dispatch it to the appropriate contact.

� Repeat the previous step (the event loop) until the application terminates.

In CLUE, the event loop is represented as an operation on a contact-display object. Section 3.5 discusses

the CLUE function which implements the application event loop.

CLUE input processing is based on action methods. CLUE de�nes operations which associate input events

with actions and process events by calling the appropriate action functions. The process of �nding the

appropriate contact and its actions is referred to as \dispatching" the event. All responses of a CLUE user

interface to input events occur as \side-e�ects" of actions.

At the center of the CLUE event loop, the contact receiving an input event is then responsible for invoking

all appropriate responses. A contact's response to an input event may be one or more of the following.

� Provide input echoing or feedback, without application intervention (lexical processing).

� Inform another user interface component of the event (syntactic processing).

� Invoke application functions (semantic processing).

For any contact receiving an input event, its response to the event involves a process of event translation.

Each contact can maintain a set of mappings which translates speci�c events into sequences of actions. Since

24

2.2. DEFINING A CONTACT CLASS 23

resource-name and resource-class are the resource name and class symbols used to access a contact resource.

If :class is not given, then the resource-name is also used as the class name. The :type value is a type

speci�er which de�nes the representation type used for the resource. If the resource-name is also a slot name,

then :type option may be omitted; in this case, the slot :type option is used as the resource representation

type. The :initform option gives a form which may be evaluated to de�ne the initial resource value. The

:documentation option furnishes a documentation string which describes this contact resource.

For programmer convenience, if the resource-name is also a slot name, then a keyword initarg of the same

name is automatically declared for the slot.

Note that the :resources option of defcontact can play the same role in contact initialization as the

:default-initargs option of defclass and that defcontact therefore does not accept :default-initargs

as a valid option. Instead of (:default-initargs name value), a programmer should specify (:resources

(name :initform value)).

22 CHAPTER 2. CONTACTS

defcontact Macro

(defmacro defcontact

(class-name

superclasses

slots

&rest options))

Generates a defclass form de�ning the class-name class, using the class-name, superclasses,

slots, and options.

class-name

A class name symbol.

superclasses

A list of superclass symbols for use in a defclass form.

slots

A list of slot speci�cations for use in a defclass form.

options

Each remaining argument gives a class option for class-name. Each class option is a list of the

form (option-keyword args*). Valid class options are:

(:constraints resource-speci�cation*) De�nes the constraint resources used by

the class. See Section 6.5.

(:documentation string) De�nes a documentation string associated

with the class.

(:resources resource-speci�cation*) De�nes the resources used by the class.

See Section 6.5.

Resources and constraint resources for a contact class are de�ned by resource speci�cations. Each resource

speci�cation is either a resource name symbol or a list of the following form.

(resource-name [:type type-speci�er]

[:class resource-class]

[:initform form]

[:documentation string])

2.2. DEFINING A CONTACT CLASS 21

Returns the list of functions and argument lists associated with the callback name for the contact.

The return value is a list of the form ((function argument*)*). Returns nil if no callback functions

are associated with the name.

add-callback Function, contact

(defun add-callback

(contact

name

function

&rest arguments)

(declare (values name)))

Creates an entry in the callbacks list of the contact which associates the given callback name with

the given function object and arguments. The function and arguments are placed at the end of

the list of callback functions associated with the callback name. The arguments replace any previous

arguments for the function in the callbacks list.

delete-callback Function, contact

(defun delete-callback

(contact

name

function))

Disassociates the callback function from the given callback name on the contact's callbacks list.

contact Variable

Bound to the contact argument of apply-callback in its dynamic extent.

:destroy Callback, contact

(defun destroy-function ())

Invoked by the primary contact method for destroy. Application programmers can de�ne :destroy

callback functions to perform special cleanup tasks or to enforce \existence" constraints related to

contacts.

2.2 De�ning a Contact Class

The defcontact macro is used by a contact programmer to de�ne a new contact class. Expansion of this

macro generates a defclass form de�ning the class.

20 CHAPTER 2. CONTACTS

The relationship between a callback name and an associated function resembles that between a method

name and the code which implements it. In particular, the set of callback names used is the same for all

instances of a contact class. These callback names and interfaces constitute a critical part of the application

programmer interface to a contact class. However, the key di�erence is that the associated callback functions

and arguments are instance data that are usually di�erent for each class instance.

For example, a contact programmer may de�ne a slider contact which uses a callback named user-changed-

value. The contact programmer arranges for this callback to be invoked each time the user manipulates

the slider position and for it to be passed an argument indicating the new slider value. A programmer of a

robot control application may use such a slider to allow a user to adjust the rate at which the robot moves.

The application programmer will thus want to modify the slider's callbacks slot by adding an element like

(user-changed-value change-robot-speed). In this case, change-robot-speed should be an application

function which accepts a single argument specifying the new robot speed.

Callback functions are called using the apply-callback macro. The callbacks list of a contact can be

modi�ed by the functions add-callback and delete-callback. Only one callback is involved in the basic

contact application programmer interface described in Section 2.1.3 | the :destroy callback, which is called

by the primary destroy method.

apply-callback Macro, contact

(defmacro apply-callback

(contact

name

&rest arguments)

(declare (values callback-values)))

Calls and returns the value(s) of the functions associated with the callback name in the callbacks list

of the contact. Associated functions are called in order, and the values returned are the values of the

last function called. If no such function exists, then nil is returned.

Callback functions are executed within a catch form using the tag :abort-callback. If a callback

function executes (throw :abort-callback value*), then apply-callback immediately returns the

given value arguments.

The argument list passed to each associated callback function consists of the given arguments, fol-

lowed by any function arguments associated with the function in the callbacks list. Thus, the caller

of apply-callback will not be aware of arguments taken from the callbacks list. This allows an

application programmer freedom to extend the callback calling sequence de�ned by the contact pro-

grammer.

Additionally, apply-callback binds the special variable *contact* to the value of its contact

argument. *contact* may then be used within the dynamic extent of apply-callback to refer to the

contact invoking the callback.

callback-p Function, contact

(defun callback-p

(contact

name)

(declare (values list)))

2.1. USING CONTACTS 19

Returns non-nil if and only if the contact has been realized. See Section 2.1.1.

resource Function, contact

(defun resource

(contact

resource-name)

(declare (values resource-value)))

Returns the value found for a contact resource when the contact was initialized. resource-name is

the name of a resource de�ned in the resource speci�cation list for the contact's class or one of its

superclasses. See Section 6.4.

sensitive-p Function, contact

(defun sensitive-p

(contact)

(declare (values boolean)))

Returns non-nil if the contact is sensitive. A contact is sensitive if and only if it and all of its ancestors

have a value of :on for their sensitive slots. See Section 3.8.5 for a discussion of input sensitivity.

2.1.5 Callbacks

A callback is a function which represents a connection between a contact and the rest of an application

program. A contact calls a callback function in order to report the results of the user interface component

which it represents. Thus, callbacks have a crucial role in a CLUE application: they provide a link between

the application and its user interface. Callbacks represent the application \semantics" of the user interface.

Similarly, callbacks can be used by a contact to communicate its results to another contact. This means that

callbacks are also involved in the implementation of the \syntax" that ties together the various components

of a user interface.

Each contact instance has a callbacks slot containing a list of its callback functions. The callbacks slot

is an association list containing elements of the form (callback-name (function argument*)*). That is, the

callbacks list associates a callback-name symbol with a sequence of functions and their (optional) argument

lists. The callback-name is used by the contact programmer to invoke each of the associated functions with

the given arguments.

Both the contact programmer and the application programmer are involved in establishing a contact's call-

backs. The contact programmer de�nes a set of callback names and, for each callback, the basic argument

and return value protocol to be used. The contact programmer is also responsible for the implementation

of contact methods, in which callback functions are invoked via the callback names. The application pro-

grammer is responsible for associating with each callback name the actual function(s) and arguments used to

implement it. The application programmer can also extend the basic argument protocol used by associated

functions.

18 CHAPTER 2. CONTACTS

Inquiry Functions

contact-complete-class Function, contact

(defun contact-complete-class

(contact)

(declare (values complete-class-list)))

Returns a list of symbols containing the complete resource class of the contact. See Section 6.2.

contact-complete-name Function, contact

(defun contact-complete-name

(contact)

(declare (values complete-name-list)))

Returns a list of symbols containing the complete resource name of the contact. See Section 6.2.

destroyed-p Function, contact

(defun destroyed-p

(contact)

(declare (values boolean)))

Returns non-nil if the contact is being destroyed. Because output to the X server is bu�ered, there

can be a delay between the time that destroy is called and the time that all contact display resources

have been freed.

inside-contact-p Method, contact

(defmethod inside-contact-p

((contact contact)

x

y)

(declare (values boolean)))

Returns non-nil if the given point is inside the contact. x and y are relative to the origin of the

contact coordinate system.

realized-p Method, contact

(defmethod realized-p

((contact contact))

(declare (values boolean)))

2.1. USING CONTACTS 17

Management Functions

initialize-instance Method, contact

(defmethod initialize-instance

((contact contact)

&key

&allow-other-keys))

See Section 2.1.1. The contact programmer must de�ne an initialize-instance :after method to

handle initialization for any non-slot resources.

realize Method, contact

(defmethod realize

((contact contact)))

Realizes the contact.

move Method, contact

(defmethod move

((contact contact)

x

y))

Called in order to actually change the position of the contact. An application program must �rst

call change-geometry in order to invoke geometry management. The move method is called only by

change-geometry. The contact programmer, however, may �nd it useful to attach auxiliary methods

to move.

resize Method, contact

(defmethod resize

((contact contact)

width

height

border-width))

Called in order to actually change the size of the contact. An application program must �rst call

change-geometry in order to invoke geometry management. The resize method is called only by

change-geometry. The contact programmer, however, may �nd it useful to attach auxiliary methods

to resize.

16 CHAPTER 2. CONTACTS

Displays the contact. The x, y, width, and height parameters indicate the rectangular portion of

the contact which needs to be (re)displayed. x and y are given relative to the contact's origin. If no

optional parameters are given, this method should display the entire contact.

This method is called during contact input processing, in response to Expose events. If the

compress-exposures slot of a contact's class is :on, then display will be called only for Expose

events in which the expose count is zero. See Section 3.8.6 for a description of event compression.

The lambda list for this generic function includes &key so that contact programmers can de�ne methods

with additional keyword arguments.

accept-focus-p Method, contact

(defmethod accept-focus-p

((contact contact))

(declare (values boolean)))

Returns non-nil if and only if the contact is willing to become the keyboard input focus. A contact

which does not respond to keyboard input events should always return nil as the value of this method.

The primary method for the contact class determines the value returned by inspecting the contact's

event-mask. Management of contact input focus is discussed further in Section 4.3.

preferred-size Method, contact

(defmethod preferred-size

((contact contact)

&key

width

height

border-width)

(declare (values width height border-width)))

Returns the preferred size of the contact, based on its current state plus the changes suggested by

the width, height, and border-width arguments. This allows the contact to suggest to its geometry

manager a size that best �ts its current contents, taking into account certain changes that the geometry

manager anticipates making. However, a geometry manager is free to ignore or override this preferred

size (see Section 4.2).

The primary method for preferred-size is compliant, returning the given keyword value (or, if no

keyword is given, the current value) for width, height, and border-width.

2.1. USING CONTACTS 15

A special case occurs when the contact is a top-level shell. In this case, geometry management is

provided by the window manager, and the requested priority change (possibly modi�ed by the window

manager) is performed immediately. Thus, when the contact is a top-level shell, change-priority

always behaves as if accept-p is true.

destroy Method, contact

(defmethod destroy

((contact contact)))

Called only when the contact will no longer be referenced. Frees any resources used by the contact.

In particular, its window will be destroyed. The primary contact method for destroy invokes the

contact's :destroy callback (see Section 2.1.5).

2.1.4 Contact Programmer Interface

The following functions are not intended to be called directly from application programs. However, a contact

programmer will use them to de�ne the basic behavior of a new contact class. Several functions in this contact

programmer interface are generic functions for which the contact class de�nes methods; these methods may

be rede�ned or modi�ed by the contact programmer. In general, there are three types of functions which

are used primarily by contact programmers.

Characteristic Have methods that are typically rede�ned for each contact class.

Management Have methods used internally to perform various management op-

erations. These methods may have :before, :after, or :around

methods for di�erent classes.

Inquiry Return information used to implement contact methods.

Characteristic Functions

display Method, contact

(defmethod display

((contact contact)

&optional x

y

width

height

&key))

14 CHAPTER 2. CONTACTS

change-geometry Function, contact

(defun change-geometry

(contact

&key x

y

width

height

border-width

accept-p)

(declare (values approved-p x y

width height border-width)))

Requests a change to one or more components of the contact's geometry. Approval of the request is

handled by the contact's parent (see Section 4.2). The return values indicate how the parent handled

the request. If approved-p is non-nil, then the request was performed as requested and the resulting

new geometry values are returned. Otherwise, the request was not performed, but the geometry values

returned suggest a compromise request which can be approved instead. If only nil is returned, no

geometry change is allowed.

If accept-p is non-nil, then any compromise geometry suggested will be accepted and performed im-

mediately. Non-nil is returned for approved-p if the original request was performed; if a compromise

request was performed instead, then nil is returned.

A special case occurs when the contact is a top-level shell. In this case, geometry management is

provided by the window manager, and requested geometry changes (possibly modi�ed by the window

manager) are performed immediately. Thus, when the contact is a top-level shell, change-geometry

always behaves as if accept-p is true.

change-priority Function, contact

(defun change-priority

(contact

priority ;(member :above :below :top-if :bottom-if :opposite)

&key sibling

accept-p)

(declare (values approved-p priority sibling)))

Requests a change to the contact's stacking priority. See the CLX function xlib:window-priority

for a description of the priority and sibling arguments. Approval of the request is handled by the

contact's parent (see Section 4.2). The return values indicate how the parent handled the request. If

approved-p is non-nil, then the request was performed as requested and the resulting new priority

values are returned. Otherwise, the request was not performed, but the priority values returned suggest

a compromise request which can be approved instead. If only nil is returned, no priority change is

allowed.

If accept-p is non-nil, then any compromise request suggested will be accepted and performed im-

mediately. Non-nil is returned for approved-p if the original request was performed; if a compromise

request was performed instead, then nil is returned.

2.1. USING CONTACTS 13

Makes the user interface consistent with the current state of the contacts belonging to the

contact-display. Any unrealized contact is realized; if it is also managed, then geometry man-

agement is invoked to negotiate its initial position, size, and priority. Any :mapped contact is mapped.

update-state is called internally by CLUE (by process-next-event) and is not typically called by

CLUE programmers directly. However, there are cases when it is useful to invoke the update-state

function to cause realization explicitly (for example, to complete initial negotiation of the size of a

:managed contact before positioning and mapping it).

The default state value is :mapped. As a result, unless speci�ed otherwise, all contacts will automatically be

viewable after update-state is called (in particular, after a call to process-next-event). After initialization

and realization, the (setf contact-state) accessor method causes transitions in a contact's state and its

visible e�ect. The most common usages are setting a contact's state to :withdrawn to withdraw it or to

:mapped to present it.

2.1.3 Application Programmer Interface

The following are the basic functions used by application programmers to operate on contacts. Some of these

are generic functions for which the contact class de�nes a method.

(setf contact-state) Method, contact

(defmethod (setf contact-state)

(new-state

(contact contact)))

Changes the state of the contact to the new-state. The visible e�ect of contact state transitions are

described below.

New Value Visible E�ect

:withdrawn The contact is withdrawn, i.e. removed from geometry management

and made invisible and unavailable for input.

:mapped The contact is presented, i.e. mapped and placed under geometry man-

agement.

:managed The contact is unmapped and placed under geometry management.

See Section 4.2 for a complete discussion of geometry management.

12 CHAPTER 2. CONTACTS

If the initial value found for a resource is not of the type given by the :type option in its resource

speci�cation, then make-contact will attempt to convert the value to the correct type. The new

contact's convert method is called to perform all representation type conversions for resources (see

Section 6.3). This type conversion is a convenient way to initialize a slot or resource with an object

which must created by a request to the X server (e.g. xlib:font, xlib:cursor, xlib:pixmap, etc.).

2.1.2 Contact State

The visual e�ect of a contact upon the user interface is controlled by the value of its state slot and is related

to two factors

3

.

� Mapping: The concepts of mapped, viewable, and visible apply to any xlib:window object and

therefore to contacts as well[6]. A contact is said to be \mapped" if (xlib:map-window contact) has

been called. A contact is \viewable" if it and all of its ancestors are mapped. A contact is \visible"

only if someone looking at the display screen can actually see some part of it; that is, the contact is

viewable and is not completely occluded by any other windows.

� Geometry management: A contact under geometry management control is said to be \managed."

As a result of CLUE geometry management, any changes to the position or size of a managed contact

may a�ect the geometry of its managed siblings, its parent, and (in general) any other managed member

of the contact subtree to which it belongs. Creating or destroying a managed contact can have a similar

result. However, changes involving an unmanaged contact do not have this kind of \ripple" e�ect on

the visible user interface.

These factors are not independent. In CLUE, it is invalid for a contact to be mapped but unmanaged,

because this contradicts the purpose of geometry management

4

. Thus, the state slot of a contact has one

of three values.

:withdrawn The contact is unmanaged and unmapped.

:managed The contact is managed but unmapped.

:mapped The contact is both managed and mapped.

The conditions corresponding to a contact's state are not guaranteed to be satis�ed until the contact is

realized. CLUE calls the update-state function in order to force consistency of the state of all contacts

belonging to a contact-display (see Section 3.1).

update-state Function, contact-display

(defun update-state

(contact-display))

3

See Chapter 4 for a complete discussion of contact hierarchy and geometry management.

4

However, CLUE does not prevent a programmer who truly wants a mapped-but-unmanaged contact from using

xlib:map-window to accomplish this.

2.1. USING CONTACTS 11

make-contact Function, contact

(defun make-contact

(class

&rest initargs

&key parent

defaults))

Creates and returns a new instance of the given contact class, according to the remaining initargs,

which are keyword-value pairs. The optional :defaults argument is a list of keyword-value pairs; its

use is described later below.

A value for the :parent argument must be given. The parent may be a contact or a contact-display

object. If a contact is given as the parent, then the new contact is associated with the parent's

contact-display. If a contact-display is given as the parent, then the new contact is associated

with the contact-display and its parent is set to the root given by the value of the contact's screen

resource or (if no such resource value has been de�ned) to the default root of the contact-display.

In addition to slot-�lling initargs, keyword arguments may be contact resource names. Resource values

given as arguments to make-contact override those read from a resource database.

The make-contact function also establishes an initial value for each of the contact's resources (see

Section 6.5). Class resources for the contact are determined by the contact class and are speci�ed

when the contact class is de�ned, using the defcontact macro (see Section 2.2). Constraint resources

for the contact are determined by the class of the contact's parent. For each contact resource a value

is determined by the following procedure.

� If the resource name keyword appears in initargs with a non-nil value, then the value given

is used (specifying a nil resource value in initargs is equivalent to omitting the resource name

altogether).

� If no value was found in the previous step, then the complete resource name and class are used

to look up a value in a resource database (see Section 6.4). The resource database used is given

by the value of the special variable *database*.

� If no value was found in the previous step and the resource name appears in the :defaults list

with a non-nil value, then this value is used. Thus, assigning a resource value in the :defaults

list is a way for an application programmer to suggest a resource value which may be overridden

by the contents of the resource database.

� If no value was found in the previous step, then the value used is the one speci�ed for the default

resource value in the defcontact form de�ning the contact class (i.e. the value of the resource

speci�cation :initform option).

� If the resource is a contact slot name and if no value was found by the previous steps, then the

:initform value for the slot is used.

If the resource name is a contact slot name, then the slot is set to the value found. If the contact

programmer is also using non-slot resources, then an initialize-instance :after method must be

de�ned to handle these values.

10 CHAPTER 2. CONTACTS

x, y, width, height, border-width

These geometrical attributes of a contact window are de�ned by CLX. Such attributes

can always be requested from the X server, but they are also made available to the client

application as slot values of the contact object. CLUE automatically ensures that these

slot values are consistent with the values stored by the X server.

depth, background, event-mask

These non-geometrical attributes of a contact window are de�ned by CLX. Such attributes

can always be requested from the X server, but they are also made available to the client

application as slot values of the contact object. CLUE automatically ensures that these

slot values are consistent with the values stored by the X server.

2.1.1 Contact Creation

The creation of a contact object is actually a two-step process, in which a contact instance is �rst initialized

and then realized. Initialization consists of collecting initial values for all contact attributes. However, no X

server resources (windows, etc.) are actually allocated. Later, when the contact is realized, these resources

are allocated and contact creation is complete. Postponing server resource allocation until realization can

make the process of creating a new contact much more e�cient. It is common for server resources to be

a�ected by operations that occur after initialization but before the contact is actually displayed to the user.

For example, when creating a complex contact hierarchy, the addition of descendants can modify the size of

ancestor contact windows (see Chapter 4 for a discussion of composite contacts and geometry management).

In this case, realization of the composite contact would occur after the initialization of all of its descendants

and would allocate a window using the �nal adjusted size.

Initialization of a new contact object is performed by the make-contact function. Many initial attributes of

a contact are considered to be resources that can be read from a resource database (see Chapter 6). Contact

resources are described in the resource speci�cation list given in the defcontact form de�ning a contact

class (see Section 2.2). For example, the resource speci�cation list for the contact class allows values for

certain slots, for window creation attributes, and for other attributes to be read from a resource database

during contact initialization. The make-contact function implements most of the resource processing done

during contact initialization

2

.

Typically, CLUE programmers need not be aware of contact realization. CLUE realizes a contact auto-

matically by calling the realize function during the next call to process-next-event after initialization.

However, there are cases when it is useful to invoke the update-state function to cause realization explicitly

(see Section 2.1.2). Contact programmers can use the realized-p method to ensure that operations which

depend on the existence of contact server resources are not performed before the contact has been realized.

For example, graphics output to a contact cannot occur before it is realized, because its window does not

yet exist.

2

Implementation Note: It is also possible to create a new metaclass for contact objects, with a specialized default-initargs

method for getting initializations from a resource database. This would mean that the CLOS make-instance function could be

used instead of make-contact. However, standardization of CLOS metaclass functionality is currently incomplete. Furthermore,

the use of a special make-contact function allows for various optimizations in contact initialization.

2.1. USING CONTACTS 9

name

The name of the contact. Technically, this is a resource name symbol which can be used to

access contact resources stored in a resource database. See Chapter 6 for a complete dis-

cussion of contact resource management. By default, the name of a contact is (class-name

(class-of contact)).

parent

The parent contact of the contact (see Chapter 4). CLUE automatically ensures that this

slot value is always consistent with the window hierarchy stored by the X server. The

:parent initarg is a required argument to the make-contact function.

state

A state variable which controls the visual e�ect of the contact. See Section 2.1.2. The

state of a contact determines whether it is viewable and whether it is under geometry

management control.

callbacks

callbacks is an association list containing the contact callbacks. Callbacks are also

discussed in Section 2.1.5.

compress-exposures, compress-motion

Flags which control the �ltering of redundant input events. See Section 3.8.6. These are

class data shared by all instances of the contact class.

event-translations

event-translations is lookup table which controls how the contact responds to input

events that it receives. Each of its elements is an event translation which associates an

input event with one or more contact actions. The event-translations are a contact

resource that can be read from a resource database. See Section 3.8.3 for a description of

event translations and their syntax.

sensitive

A
ag which represents the contact's input sensitivity state. See Section 3.8.5.

8 CHAPTER 2. CONTACTS

;; Internal

1

initialization)

(:resources

;; Slot values

border-width

callbacks

background

depth

event-mask

event-translations

height

name

sensitive

width

x

y

;; Window attributes

(backing-store :type (or null (member :not-useful :when-mapped :always)))

(border :type (or null (member :copy) xlib:pixel pixmap))

(cursor :type (or null (member :none) xlib:cursor))

(override-redirect :type (or null (member :on :off)))

(save-under :type (or null (member :on :off)))

;; Other resources

(documentation :type (or list string))

(screen :type xlib:card8)))

The slots of the contact class are described below.

display

This slot is the same as the display slot of an xlib:window object. A contact is al-

ways associated with a contact-display object. See Section 3.1 for a description of

contact-display objects.

1

Internal slots are implementation-dependent and are not guaranteed to exist in every environment. Programs which use

such slots may not be portable to every CLUE implementation.

2.1. USING CONTACTS 7

;; Callbacks

(callbacks :type list

:reader contact-callbacks

:initform nil)

;; Input control

(compress-exposures :type (member :off :on)

:reader contact-compress-exposures

:initform :off

:allocation :class)

(compress-motion :type (member :off :on)

:reader contact-compress-motion

:initform :on

:allocation :class)

(event-translations :type list

:initform nil)

(event-mask :type (or null xlib:event-mask)

:accessor contact-event-mask

:initform (xlib:make-event-mask :exposure))

(sensitive :type (member :off :on)

:accessor contact-sensitive

:initform :on)

;; Attributes

(border-width :type xlib:card16

:reader contact-border-width

:initform 1)

(background :type (or (member :none :parent-relative)

xlib:pixel xlib:pixmap))

:accessor contact-background

:initform :parent-relative)

(depth :type xlib:card16

:reader contact-depth

:initform 0)

(height :type xlib:card16

:reader contact-height

:initform 0)

(width :type xlib:card16

:reader contact-width

:initform 0)

(x :type xlib:int16

:reader contact-x

:initform 0)

(y :type xlib:int16

:reader contact-y

:initform 0)

Chapter 2

Contacts

2.1 Using Contacts

The fundamental properties of a contact are de�ned by the contact class. All contact classes must be de�ned

using the defcontact macro (see Section 2.2). Contacts are a subclass of the CLX xlib:window data type

and a contact object may be used wherever a xlib:window object is allowed. Because xlib:window is a

subtype of xlib:drawable, a contact can also be an argument to all CLX operations on xlib:drawable

objects.

contact Class

(defcontact contact (xlib:window)

;; Hierarchy

((display :type xlib:display

:reader contact-display

:initarg :display)

(name :type symbol

:reader contact-name

:initarg :name)

(parent :type contact

:accessor contact-parent

:initarg :parent)

;; State

(state :type (member :withdrawn :managed :mapped)

:accessor contact-state

:initarg :state

:initform :mapped)

6

1.4. PREVIOUS WORK 5

1.3.4 Resources

CLUE allows various values of the user interface (e.g. colors, fonts, title strings, etc.) to be treated as

resources which can be stored and retrieved from a resource database, using the resource management

facilities of CLX. User interface values in a resource database can be modi�ed by a user \externally," without

change to the application program. This provides a consistent mechanism for contact objects to integrate

the preferences of both the interface programmer and an individual user.

1.4 Previous Work

The design of CLUE was modelled on the X-Toolkit (Xt) library [3]. The X-Toolkit is a user interface

programming package, designed chie
y for programmers using the C language, and distributed with the

X Window System itself. CLUE could be described as a translation of the X-Toolkit \intrinsics" into the

domain of Common Lisp and CLOS.

1.5 Packages

All CLUE symbols (classes, functions, methods, macros, etc.) are interned in the package named CLUE.

Unless otherwise speci�ed, all symbols de�ned by this speci�cation are assumed to be interned in the CLUE

package.

All symbols which belong to CLX are interned in the XLIB package. References in this document to CLX

symbols will always specify the XLIB package explicitly.

4 CHAPTER 1. INTRODUCTION

This distinction contributes to the separation of application programming from user interface programming,

one of the primary goals of a UIMS. In terms of the Seeheim UIMS model[4], contacts represent the presen-

tation (or lexical) component of a user interface.

1.3 Summary of Features

1.3.1 Contacts, Composites, and Interactive Streams

CLUE de�nes the basic class of contact objects, the fundamental components of a user interface. Contacts

are a subclass of the CLX xlib:window data type and a contact object may be used wherever a xlib:window

object is allowed.

Additionally, CLUE de�nes the subclass of composites, representing contacts which are the \parents" of

other contacts. A composite contact may be the parent of another composite, leading to a tree-structured

contact hierarchy. A composite also furnishes geometry management and input focus management services

for the contacts which are its children. Roots are special composite contacts used to represent entire display

screens. Shells are composites which handle the duties required by standard conventions for top-level X

windows[5]. CLUE de�nes several shell subclasses which implement client interaction with window managers

and session managers.

An interactive stream is another contact subclass de�ned by CLUE. Interactive streams are designed to

integrate CLUE with the conventional stream-based I/O of Common Lisp.

1.3.2 The Event Loop, Contact Displays, and Contact Input

CLUE de�nes the contact-display object type, which represents the basic input processing of an interactive

application and which supports the event loop model for application input. A contact-display object

inherits the behavior of a CLX xlib:display object and can be substituted wherever a xlib:display is

allowed.

In CLUE, the event loop is represented as an operation on a contact-display object, which dispatches

input events to the appropriate contact. At the center of the CLUE event loop, the contact receiving an

input event is then responsible for invoking all appropriate responses.

1.3.3 Graphics Contexts

Clients of the X Window System specify the visual attributes of graphical output primitives by using graph-

ics contexts. CLUE provides support for more e�cient sharing of graphics context objects among several

components of the user interface. Contact programmers are still free to adopt various policies for sharing

graphics contexts, including hierarchical inheritance or no sharing at all.

1.2. OVERVIEW 3

� To simplify and raise the level of the dialog between the application and the user. A contact insulates

the application programmer from the detailed behavior of a user interface component (displaying its

contents, acquiring its input, etc.). As an \agent" of the application, a contact can direct communica-

tion with the user in terms closer to the application's domain.

� To de�ne a uniform framework within which many di�erent types of user interface objects can be

combined. The contact class raises to a higher level the commonality between a great variety of

interface objects | menus, forms, dials, scroll bars, buttons, dialog boxes, text entry, etc.

Because CLUE is an object-oriented programming system, it is described in terms of the proposed standard

Common Lisp Object System (CLOS)[1]. The CLUE speci�cation thus consists primarily of a set of CLOS

classes, generic functions, and methods.

The subclassing and inheritance properties of CLOS are important to the use of contacts. A contact (sub)class

implements a speci�c interface technique (for input, output, or both) and a speci�c presentation style. Thus,

a contact subclass can represent either an extension in technique (e.g. a hierarchical-pop-up-menu subclass

of a pop-up-menu class) or a variation in style only (e.g. a drop-shadow-pop-up-menu subclass). This is

expected to lead to the development of contact \libraries", providing a rich repertoire of interface techniques

and a choice of several functionally-interchangeable styles.

1.2.2 The User Interface Programming System

As de�ned by CLUE, contact objects represent an intermediate level of abstraction within a larger user

interface programming system. CLUE relies upon the services of a lower-level subsystem typically referred

to as a window system. CLUE, in turn, forms the basis for a more comprehensive user interface

management system (UIMS).

CLUE depends on a window system to provide programmer interfaces for controlling interactive I/O hardware

| the display screen(s), the keyboard, the pointer, etc. Speci�cally, CLUE is de�ned in terms of the X

Window System protocol[6] and CLX, the Common Lisp programmer's interface to the X Window System[8].

Most window systems, including X, contain a component that is commonly called the window manager.

The window manager is the part of the window system that provides a user interface to various operations on

windows | changing a window's position, size, visibility, etc. Since an X window manager is simply another

application program (albeit a rather specialized one), the de�nition of a window manager is not included in

the CLUE speci�cation.

CLUE distinguishes two di�erent aspects of programming the user interface:

� De�ning a contact

� Using a contact

The application programmer who instantiates and uses a contact object does not need to know how

the class and methods of the contact were implemented by the contact programmer. In particular, the

window system interfaces used by the contact programmer need not be visible to the CLUE application

programmer.

2 CHAPTER 1. INTRODUCTION

the methodology of object-oriented programming.

Modular

CLUE should comprise a well-de�ned and self-su�cient layer of the user interface programming

system. Using CLUE, an application programmer should be able to implement most types

of user interfaces without accessing underlying software layers and without knowledge of the

implementation internals of CLUE objects.

Compatible

CLUE must be compatible with related software systems which will be separately standardized.

CLUE is based on the X Window System which, because of its wide distribution and broad

support, constitutes a de facto standard

1

. CLUE should be consistent with future Common Lisp

standards for object-oriented programming. Therefore, CLUE is based on the proposed Common

Lisp Object System (CLOS) [1].

1.2 Overview

1.2.1 Contacts

In CLUE, the basis for programming the user interface of an application program is object-oriented pro-

gramming | creating objects called contacts and invoking their methods.

An interactive application program can be considered to consist of a collection of functions, some of which

perform the processing that is essential to the application's purpose (e.g. text editing, knowledge base

management, etc.). Other functions exist solely for the purpose of communicating with the application's

human user. In CLUE, such human interface functions are represented by objects known as contacts.

Contacts are responsible for presenting application information to the user on the display screen and for

informing the application of input sent by the user via interactive input devices (such as the keyboard and

the pointer). A contact generally embodies a component of the user interface that knows how to:

� display its contents,

� process input events that are directed to it, and

� report its results (if any) back to the application.

A contact provides a relatively high-level abstraction for user interface programming. The purpose of such

an abstraction is twofold:

1

X is also being considered by ANSI for a proposed national standard for display management.

Chapter 1

Introduction

This document describes the Common Lisp User Interface Environment (CLUE), a portable system for user

interface programming in Common Lisp. CLUE is based on the X Window System[7] and extends X to

provide an architectural model for the construction of interactive Lisp applications. In this model, a user

interface is composed of a set of abstract interface objects. CLUE de�nes the basic programmer interfaces

for de�ning interface object types, creating interface objects, and using them to control the dialog between

the application and its human user.

1.1 Goals

Portable

Applications which use CLUE should be easily portable to any hardware/software environment

which provides an implementation of CLUE and CLX[8], the Common Lisp programmer's in-

terface to the X Window System. CLUE itself should be a portable software system written in

Common Lisp[9].

Flexible

CLUE is intended to support the development of a wide variety of user interface styles. In

particular, it should be possible to use CLUE to implement any of the user interfaces found in

current Lisp development environments. Both graphical and textual interfaces should be easy

to create. In order to achieve this goal, CLUE is \policy-free". That is, decisions about user

interface style | the look, feel, consistency, and techniques of the interface | are left to the user

interface programmer.

Extensible

CLUE should provide the ability to de�ne and deploy new types of user interface objects which

re�ne and extend the behavior of more basic object types. CLUE provides this ability through

1

List of Figures

6.1 Standard Type Conversions : 75

6.2 Matching Resource Names : 75

v

iv CONTENTS

8 Acknowledgements 82

CONTENTS iii

4.5 Shells : 53

4.5.1 Creating A Shell : 54

4.5.2 Shell State : 55

4.5.3 Shell Geometry Management : 55

4.5.4 Override Shells : 56

4.5.5 Window Manager Shells : 56

4.5.6 Top-Level Sessions : 60

4.5.7 Changing Shell Properties : 61

4.5.8 Interclient Messages : 61

4.6 Hierarchy Utility Functions : 63

5 Graphics Contexts 65

5.1 Using the Graphics Context Cache : 65

5.2 Policies for Sharing Graphics Contexts : 66

6 Resource Management 68

6.1 Resource Databases : 68

6.2 Complete Names and Classes : 70

6.3 Representation Types : 71

6.4 Accessing Resource Values : 71

6.5 Contact Resources : 73

7 Interactive Streams 76

7.1 Interactive Stream Input : 76

7.2 Interactive Stream Output : 78

7.3 Input From Multiple Streams : 79

7.4 Stream I/O Model : 80

ii CONTENTS

2.1.5 Callbacks : 19

2.2 De�ning a Contact Class : 21

3 Input 24

3.1 The Contact Display : 25

3.2 Events : 27

3.3 Actions : 29

3.4 Global Event Processing : 31

3.4.1 Before Actions : 31

3.4.2 Modal Input : 32

3.5 The Event Loop : 32

3.6 Synchronizing Event Processing : 33

3.7 Timers : 34

3.8 Contact Input Programming : 35

3.8.1 Event Speci�cations : 35

3.8.2 De�ning New Event Speci�cations : 37

3.8.3 Event Translation : 38

3.8.4 Double-click Events : 41

3.8.5 Contact Sensitivity : 43

3.8.6 Event Compression : 44

4 Contact Hierarchy 45

4.1 Composites : 45

4.2 Geometry Management : 47

4.3 Focus Management : 50

4.4 Roots : 51

Contents

1 Introduction 1

1.1 Goals : 1

1.2 Overview : 2

1.2.1 Contacts : 2

1.2.2 The User Interface Programming System : 3

1.3 Summary of Features : 4

1.3.1 Contacts, Composites, and Interactive Streams : 4

1.3.2 The Event Loop, Contact Displays, and Contact Input : : : : : : : : : : : : : : : : : : 4

1.3.3 Graphics Contexts : 4

1.3.4 Resources : 5

1.4 Previous Work : 5

1.5 Packages : 5

2 Contacts 6

2.1 Using Contacts : 6

2.1.1 Contact Creation : 10

2.1.2 Contact State : 12

2.1.3 Application Programmer Interface : 13

2.1.4 Contact Programmer Interface : 15

i

Common Lisp User Interface Environment

Kerry Kimbrough

LaMott Oren

Texas Instruments Incorporated

Version 6.0

July 10, 1989

c

1987, 1988, 1989 Texas Instruments Incorporated

Permission is granted to any individual or insti-

tution to use, copy, modify and distribute this

document, provided that this complete copyright

and permission notice is maintained, intact, in

all copies and supporting documentation. Texas

Instruments Incorporated makes no representa-

tions about the suitability of the software de-

scribed herein for any purpose. It is provided

\as is" without express or implied warranty.

